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Why study natural selection
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... from so simple a beginning
endless forms most beautiful

and most wonderful have been,

and are being evolved.

Charles Darwin, 1859
On the Origin of Species by Means of

Natural Selection
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Big question of biology

Normal Wings Wrinkled Wings



Evolutionary conservation means function

Genomic regions conserved across diverse
species most likely have some functional
significance
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are effective in identifying coding regions.

Thomas, et al. 2003. Nature



High variability may also mean functional
significance, if the variability is driven by
selection

Evolutionary biologists are more interested in
positive selection because fixations of
advantageous mutations in the genes or genomes
are responsible for evolutionary innovations and
species divergences.



There are two main explanations for genetic
variation observed within a population or
between species:

Natural selection (survival of the fittest)
Mutation and drift (survival of the luckiest)

Gillespie, J.H. 1998. Population genetics: a concise guide. John
Hopkins University Press, Baltimore.

Hartl, D.L., and A.G. Clark. 1997. Principles of population
genetics. Sinauer Associates, Sunderland, Massachusetts.



The neo-Darwinian theory of evolution

Natural selection shapes the
genetic makeup

Most mutations are
deleterious, removed by
purifying selection

Substitutions # polymorphisms

Substitutions are acquired by
positive selection

Polymorphisms are kept by
balancing selection

Mutation creates
varniation

Unfavorable mutations
selected against

Reproduction and
mutation occur

Favorable mutations
more likely to survive

... and reproduce



The neutral theory of molecular evolution

Motoo Kimura

Most mutations are deleterious

Most changes: random fixation of
neutral mutations

The fate of alleles is determined
by random genetic drift

Substitution rate = neutral
mutation rate (molecular clock)

Selection may operate; but is too
weak to influence

Substitution = polymorphism

Morphological traits evolve by
natural selection



The impact of the neutral theory

* The neutral theory makes simple and testable
predictions about what we should observe: provided

a falsifiable null hypothesis

e Strengthened the connection between molecular

biology and population genetics

* Availability of such null hypothesis prompted the

development of neutrality tests

s = selection coefficient

s describes relative fitness of
mutant a vs. wild-type A.
Genotype fitness:

1 for AA, 1+s for Aa, 1+2s for aa
s > 0 positive selection

s < 0 negative selection

(a)

Frequency (b) Frequency
of mutation of mutation

0 + - 0
Selection coefficient Selection coefficient

From Ridley (1996) Evolution



Neutrality and selection tests

* Mutational frequency spectrum
(eg, Tajima’s D, Tajima 1989)

* Population subdivision

LD & haplotype structure

* Within/between species variability
(HKA test, Hudson, Kreitman, Aguade 1987)

Account for codon structure:

» Within/between species variability
(MK test, McDonald-Kreitman 1991)

e Based on codon models




Standard
genetic code

The genetic code determines
how random changes to the
gene brought about by the
process of mutation will
impact the function of the
encoded protein

Types of codon changes

Synonymous (silent):
TTC (Phe) = TTT (Phe)

Nonsynonymous:
TTC (Phe) - TTA (Leu)
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Measuring selection on the protein

‘% CTG ATA CCC CTC AGC

Ancestral sequence: © I P
TTG ATA CGC CTC AGC =@k TT:- ATA C CTC AGT
I R

Synonymous rate = d. (also K)
Nonsynonymous rate = d (also K,)

w = d,/d;
w >1 Positive selection

w =1 Neutral evolution
w <1 Negative selection



Why not counts but rates?

Example:
Pairwise alignment of 500 codons

Observed differences:
5 synonymous differences
5 nonsynonymous differences

Conclusion: Neutral evolution?

Hint: Need to know how many sites are synonymous and how many are nonsynonymous



Evolution at the three codon positions

Relative proportion of different types of mutations in hypothetical protein
coding sequence.

Expected number of changes (proportion)
Type All 3 Positions 1st positions 2nd positions 3rd positions
Total mutations 549 (100) 183 (100) 183 (100) 183 (100)
Synonymous 134 (25) 8 (4) 0 (0) 126 (69)
Nonsyonymous 392 (71) 166 (91) 176 (96) 57 (27)
nonsense 23 (4) 9 (5) 7 (4) 7 (4)

Modified from Li and Graur (1991). Note that we assume a hypothetical model where all codons are used equally and
that all types of point mutations are equally likely.

Note: by framing the counting of sites in this way we are using a "mutational opportunity”
definition of the sites Not everyone agrees that this is the best approach. For an alternative view
see Bierne and Eyre-Walker 2003 Genetics 168:1587-1597.




Why not counts but rates?

Example:
Pairwise alignment of 500 codons (or 3x500 nt)

5 syn. differences, 25.5% syn. sites:
S =500x3x25.5% = 382.5, so d,=5/382.5 = 0.013

5 nonsyn. differences, 74.5% nonsyn. sites:
N =500x3%x74.5% = 1117.5, so dy, = 5/1117.5 = 0.0045

d,/d = 0.0045/0.013 = 0.35 < 1

Conclusion: Purifying selection



U

Pairwise estimation of dN and dS

Count synonymous and nonsynonymous sites (S and N)
Count synonymous and nonsynonymous differences
Calculate the proportion of differences, then d, and d;
Correct for multiple hits

.
® CTGC ATA CCC CTC AGC
£} TTA ATA CCC CTC AGC




Counting sites (S and N)

TG TTA
(Leu) (Leu) 1/3 synonymous sites
TTC
TCT f (Phe) 8/3 nonsynonymous
(Serf\\ sites
('-I'rAT) GTT
" rd (Val)
rer ATT
(Cys) CTT
(lle)
(Leu)

Sites are defined as mutational opportunities



Counting differences

How many differences between CCT and CAG?

Pathways between CCT and CAG Syn Nonsyn
CCT (Pro) <> CAT (His) <> CAG (GIn) 0 2
CCT (Pro) <> CCG (Pro) <> CAG (GIn) 1 1

Average 0.5 1.5



The impact of k
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transitions are
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synonymous than
transversions
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Codon usage bias

Analysis of real genes suggests that
codon usage bias leads to reduced
number of synonymous sites

(the opposite effect to the « bias)



Correcting for multiple hits

Ad hoc correction using DNA models,
which assume that a nonsynonymous site
has equal rate of changing into 3 other

nonsynonymous nucleotides (Lewontin
1989).



Numerous counting methods
of increasing sophistication

Perler, F. et al. 1980. Cell 20: 555-566

Miyata, T. & T. Yasunaga. 1980. JME 16:23-36

Li, W.-H., C.-I. Wu, & C.-C, Luo. 1985. MBE 2:150-174
Nei, M. & T. Gojobori. 1986. MBE 3: 418-426

Li, W.-H. 1993. JME 36:96-99

Pamilo & Bianchi 1993 MBE 10:271-281

Ina, Y. 1995. JME 40:190-226

Comeron, J. M. 1995, JME 41:1152-1159

Moruyama E. N. & F. R. Powell, 1997. JME 45:378-391

0 Yang, Z., and R. Nielsen. 2000. MBE 17:32-43.

Il no ts/tv bias + no codon bias
. ts/tv bias + no codon bias
I ts/tv bias + codon bias



Human & orangutan a2-globin genes: 142 codons

Method/Model K S N dn ds dn/ds
NG86 1 1094 316.6 0.0095 0.0569 0.168
Ina9s 2.1 119.3 299.9 0.0101 0.0523 0.193
YNOO 6.1 61.7 367.3 0.0083 0.1065 0.078
ML (GY94)

(1) ML Fequalxk=1 1 108.5 317.5 0.0093 0.0557 0.167
(2) ML Fequalxestimated 3.0 124.6 301.4 0.0099 0.0480 0.206
(7) ML Fo1,x= 1 fixed 1 58.3 367.7 0.0082 0.1145 0.072

(8) ML F61,xestimated 5.3 55.3 370.7 0.0082 0.1237 0.066

Base frequencies at 3rd position:
T=9%, C=52% A=1%,G0C = 37%
(Yang & Bielawski 2000. TREE 15:496-503)



Software

Methods Software

Counting

methods MEGA; codeml & yn0O0 in
NGS6 PAML
1193 MEGA, DAMBE, codeml

Comeron 95
YNOO

ML methods
GY94

DIVERGE by Comeron
yn0O0 in PAML

codeml|




Detecting selection based on [

e From pairwise comparisons
Best known examples:
Adaptation in primate lysozyme (Messier & Stewart 1997)
Adaptation in human MHC (Hughes & Nei 1988)

e From MSAs using underlying phylogeny
° Using ancestral reconstruction and counting at each site
(HA gene from flu, Fitch et al. 1997, Suzuki & Gojobori 1999)

° Markov models of codon evolution detect positive
selection

at individual sites in the protein
in individual lineages

at individual sites & lineages (episodic selection)



Types of codon substitution models

Branch models to test positive selection on lineages

on the tree
(Yang 1998. Mol. Biol. Evol. 15:568-573)

Site models to test positive selection affecting

individual sites
(Nielsen & Yang. 1998. Genetics 148:929-936;
Yang, et al. 2000. Genetics 155:431-449)

Branch-site models to detect positive selection at a

few sites on a particular lineage
(Yang & Nielsen. 2002. Mol. Biol. Evol. 19:908-917;
Yang, et al. 2005. Mol. Biol. Evol. 22:1107-1118)



Measuring selection on the protein

ATA CCC CTC ACC
I P L S
ATA CCC CTC ACC
I P L S
ATA CGG CTC AGT
I R L S
ATA TGG CTC ACC
I W L S
ATA TGT CTA A
I C L G

synonymous rate: d. nhonsynonymous rate: d
w = d\/ds> 1 positive selection
w < 1 negative selection



Why Markov codon models

e Take phylogeny into account
e Estimate evolutionary parameters
e Correct for multiple hits

e Account for all possible evolutionary
pathways between codons and weight
them based on a model



Markov codon models: a success story
e Rigorous statistical framework for hypothesis testing
e Explicitly incorporates evolutionary parameters
e Extensively tested in simulation and on real data:

Low false positive rate

Much more powerful tests
(eg, Anisimova et al. 2001, 2002, 2003; Anisimova & Yang 2007)
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Markov model of codon evolution

Instantaneous substitution matrix Q ={q,}:

MG-type model Type of change GY-type model

0 2 or 3 nt changes 0
fp Synonymous JT .
X transversion /
Kfp Synonymous KUT .
X transition !
Nonsynonymous
p
(fo transversion wﬂ:j
p Nonsynonymous WK .
WK transition /)

w = d,/d.(selection on protein)
K = transition/transversion ratio

i; = frequency of codon j

f,P = frequency of nucleotide x at codon position p



Defining instantaneous rates

There are many ways to define instantaneous rates:

Exchangeabilities
based on

HKY85

GTR

Codon-based

MG-type
frequencies

0 Kf,

1
wrC%AfA

1
RCAT—>AAT fA

GY-type
frequencies

W Ve, pTT gp7

RCAT — AAT‘TEAAT



Modeling codon frequencies

All codon models assume reversibility and stationarity

Codon frequencies {5t} are the same at any time

1/61 1/61
fefiky (£.) £
fefify fufify

nCAT EAAT



Likelihood function over phylogeny

Transition probability matrix over time t: P(t) = e®
Using P(t) a likelihood L(Data) can be constructed:

B
K CTC ATA CCC CTC AcC
TTA ATA CCC CTC AGC
.~ TTG ATA C CTC AGT

@A TTA ATA TGG CTC AGC

mc'r ATA TGT CTA GCA

I

Data Model Tree with
branch lengths

Parameters optimized by maximum likelihood



Likelihood function over phylogeny

For each site compute the likelihood:

CCT

L,=L| CAT |= EHRpReCAG (3 )EPR—W EDPy—cer ED)Py—car(ty)
CAG R N

Compute total likelihood assuming
independent & identical distribution (i.i.d.) for all sites:

L=LxLx..xL =]]L,

h=1

Log-likelihood is optimized (for convenience):

e ! m (=InL=InL +InL,+...+InL =ElnLh
CCT CAT C Pt

Unrooted tree — arbitrary root



ML parameter estimation

_—
InL =-2399 —

—
-~ —

Numerical optimization
by hill-climbing

Example ML estimation
for acetylcholine a receptor
from human and mouse



Exercises with codeml

Focus:

ML estimation with one w-ratio model MO



Likelihood ratio test for positive selection
Consider two nested models:

Model O no positive selection
(HO: [ is always <1)

Model 1 allows positive selection
(H1: [ >1 for some sites or in certain lineages)

LRTstatistic:  2AL=2(L; =Lo)~ x5,

d.f. = difference in numbers of parameters



Modeling selection variability

Assuming constant selective pressure across the whole sequence

and over the whole phylogeny renders the power of the test low
e.g., Endo et al (1996) detected only 17 out of 3595 analyzed genes to be under selection

Positive selection usually affects:
only in a few lineages/branches only few codon sites

150 — 200 mya

100 - 140 mya

40 - 80 mya

35 mya

3 Yo Ta S B

B globin gene cluster



Modeling selection variability

By modeling variable w over time and across sites

we can study:

WHEN (in which lineages) did positive selection occur?

WHERE in the sequence did positive selection occur?



Modeling variability over time

Assign independent w parameters to different
branches on the tree:

L,= E T pPr—cac (I3 1 0, )E Preoy N 0Py cor (6 1@ Py car (2, | W chimp )
R N

£
. { i
a2

CCT CAT CA



Modeling variability over time

Assign independent w parameters to different
branches on the tree:

L, = EERPRQCAG (3 st)EpR—w (L0 )Py cor GNPy car (8 T w,)
R N

-
e i
& b

CCT CAT CA



Adaptive evolution in primate lyzozyme:
w variability over time

Data: Messier & Stewart (1997) Douc langur
Re-analysis: Yang (1998) Dusky langur

Francois' Langur
Hanuman langur 1774
Purple-faced langur£c#

Proboscis monkey {7 4"

Guereza colobus
Angolan colobus

Patas monkey
Vervet
Talapoin

\E Allen's monkey

Olive baboon
Sooty mangabey
Rhesus macaque
Lar gibbon
Human
chimpanzee, bonobo, gorilla
Orangutan
Squirrel monkey
Tamarin
Marmoset

-



Primate lyzozyme: ML estimates

Model

p ¢ Wy e

A. 1-ratio: o =,
B. 2-ratios: @,, @,
C. 2-ratios: w,, w-=1

35 -1043.84 0574 =0,
36 -1041.70 0.489 3.383
35 -1042.50 0.488 1 (fixed)

LRT

Null hypothesis 20/ d.f.
O = 0, 4.24%* 1
o.=1 1.60 1

Estimates from Yang (1998)



Free w-ratio LRT with branch model

H,: one w for all branches

H,: different w for each branch 0.05
0.249 ' substisite
human ,
0.202

chimp & branch-specific w
0.245

macaque
0.191
0127 nouse B

0.121 rat %

0172




Free w-ratio LRT with branch model

H,: one w for all branches

H,: different w for each branch 0.05
0.249 ' substisite
human ‘
0.202

0172 chimp & branch-specific w

0.245

macaque
0.191
=222 mouse B

0.121 rat *

#tbranches (for unrooted
tree with T leaves):
27-3

d.f.=(27-3)-1=2T-4 _
Here: d.f. =8 09 #



Exercises with codeml

Focus:

ML estimation with branch models



Modeling w variability across sites

M-series models vary B

One-ratio MO 1 w

only by distributions N vie 2 .

Used to mOdeI W Selection M2a 4 Po, P, @o, W

Yang et al. (2000), MBE  Discrete M3 K1 popi,..Pka
Frequency M4 ) gﬁf:'f_:ﬁ,,wm
Gamma MS 2 a, B
2Gamma Mé 4 Po, % Bor o4
Beta M7 2 [e}e]
Beta&w M8 4 Po,P. 4, @
Beta&gamma M9 5 Po,P. 4, c, B
Beta&normal+1 M10 5 PoP. q, o, B

It iS hard to Say What Beta&normal>1 M11 5 Po,P. Q. 1,
distribution shapes  osonormaisi MI2 5 Po,Bie i 10
better reflects the data  snormaiso MI3 6 Po. Py Hy: Oy O, O




Examples of nested site models

0.8 0.8
M2 0.6 0.6 M1
0.4 0.4
D, P
02|18 Ii P2 02
0 - 0
®<l ;=1 ,>1 ®,<1 ®,=1
0.6 0.6
M3 M7
0.4 :
0.2 Po

® ~ B(p,q) ® ~ B(p,q)

Alternative Null 0<B(p,g) <1



1 beta(0.2, 0.2)

|

0

02 04 06 038

1

| beta(1, 0.2)

J

0

02 04 06 038

1

| beta(2, 0.2)

0

—

02 04 06 038

1

beta(0.2, 1)

02 04 06

0.8

0
beta(1, 1)
0 OI.2 OI.4 OI.6 OI.8

0

beta(2, 1)

02 04 06

0.8

beta(0.2, 2)

0

02 04 06 08 1

beta(1, 2)

0

02 04 06 08 1

beta(2, 2)

0

02 04 06 08 1



Theoretical distribution of LRT

A ] B simulated
2
X

A. MO vs. M3 (with 3 classes)

Transition from M3 to MO requires
Po= P, = 0 (boundary)

Theoretical distribution makes the test
conservative

B. M7 VS. M8 B i M simulated

2
5 X2

Transition from M8 to M7 requires

sets p,=1 (or p; =0, both at the boundary)
Theoretical distribution fits better than in A 0.2 1
(slightly conservative) b

Anisimova et al. (2001), MBE



Examples of nested site models

A better defined LRT:
The null is 50:50 X?mixture (with d.f. =1 and 0)

0.6 0.6
M8 M&8a
0.4 0.4
p
0.2 0 P 0.2 Py
0 B .

®"~B(p,q) w21 ®~B(p,gq) =1

Alternative Null



Examples of nested site-specific models

0.8
M 2 0.6

0.4

0.2

®<l ;=1 ,>1

Likelihood calculation should take into account
that a site may come from a number of different classes:

K
Lh = Pr (datasite) = 2 Pr(datasite l wsite = a)class ) p class

class=1



Example: Human MHC Class | data
192 alleles, 270 codons

Model 1 Parameter estimates

M1a (neutral) -7,490.99 p,=0.830, w,=0.041
p,=0.170, @, =1

M2a (selection) -7,231.15 p,=0.776, w,=0.058
p;=0.140, ;=1
p,=0.084, w,=5.389

LRT of positive selection:
2A0 =2 % 259.84 =519.68, P<0.000 (d.f. = 2)

Yang and Swanson (2002) MBE



So far we used
models with variable selection
to test if selection affected the data

If LRT for positive selection is significant
we can proceed inferring WHEN and WHERE...
(but this is more difficult)



Prediction of sites with Bayesian approach

w site classes (GDD or M3): | 10%

w=0.1 w=1 w=4.3

For each site compute posterior probability:

CTC
TTA

P( |m)P(m)
P( il EA ) - CTC
o P( T |i)P(i)+ P( Iu)P(u)+ P( zA ) P ()

Sites with high posteriors (>0.95)
may be inferred to be under positive selection



Empirical Bayesian calculation of
posterior probabilities that a site is under
positive selection with ® > 1.

e Naive Empirical Bayes (NEB) ignores sampling
errors in parameter estimates.

e Bayes Empirical Bayes (BEB) accounts for
sampling errors by integrating over a prior.

Nielsen & Yang. 1998 Genetics 148
Yang, Wong & Nielsen 2005 Mol Biol Evol 22



Posterior probabilities of [ for MHC (M2a)

B o=5389 w=1 ©=0.058

© oo o
» 5+ PR T

e

Probability
T

o o o o
N B D o=
| T R I

o

AN N R AN R R R AR R RARRARARAR AR NARRANANE

p (datasite l wclass)p class
E p(datag,. lw;)p;

j=site class

p (a)site = wclass ldatasite) =



Human MHC Class I: 3D structure

25 sites identified
under M2a

All sites cluster together in
the antigen recognition
domain (blue)

Yang and Swanson (2002)




Positive selection in bacterial GALA

Bacterial GALA (type lll effectors)
acquired from host plants by LGT:
residues under positive selection are
found on the convex side of horse-

shoe & involved in binding
Data from Kajava, Anisimova, Peeters (2008)

Figure 2. Structural model of GALA-LRR. (A) Ca-trace superposi-
tion of a modeled GALA-LRR and the known CC-LRR from human Skp2
protein [10] and RI-LRR from porcine ribonuclease inhibitor [46]. GALA-
LRR model is shown in a ball-and-stick representation, CC-LRR is shown
by a blue trace and RI-LRR by a magenta trace. Numbering of the
conserved GALA-LRR residues is taken from Figure 1. Numbers in red
point to positions inferred to be under positive selection. The carbon
atoms are in green, oxygen in red, nitrogen in blue. (B) A ribbon
diagram of a structural model of the C-terminal LRR domain of GALA4
type lll effector protein from R. solanacearum (strain MolK2, region 170
to 460, accession code ZP_00946474). The figure was generated with
Pymol [47]. The atomic coordinates of the model are available on
request.




With more genomes sequenced, the approach of
evolutionary comparison becomes more powerful.

It provides a way of generating interesting biological
hypotheses, which can be validated by experimentation.

lvarsson, Mackey, Edalat, Pearson, and Mannervik (2002)
|dentification of residues in glutathione transferase capable of
driving functional diversification in evolution: a novel approach to
protein design. J. Biol. Chem. 278:8733-8738.

Bielawski, Dunn, Sabehi, and Beja (2004) Darwinian adaptation of
proteorhodopsin to different light intensities in the marine
environment. Proc. Natl. Acad. Sci. U.S.A. 101:14824-14829.




Positive selection of primate TRIM5« identifies a
critical species-specific retroviral restriction domain

Sara L. Sawyer*, Lily I. Wu', Michael Emerman**, and Harmit S. Malik**

Divisions of *Basic Sciences and THuman Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109

Communicated by Mark T. Groudine, Fred Hutchinson Cancer Research Center, Seattle, WA, December 29, 2004 (received for review December 8, 2004)

Primate genomes encode a variety of innate immune strategies to
defend themselves against retroviruses. One of these, TRIM5«, can
restrict diverse retroviruses in a species-specific manner. Thus,
whereas rhesus TRIM5« can strongly restrict HIV-1, human TRIM5«
only has weak HIV-1 restriction. The biology of TRIM5« restriction

genome defense predates the origin of primate lentiviruses (11,
12) and that many other APOBEC cytidine deaminase genes
likely participate in defending the primate genome against

retroviruses.
Here, we show that the TRIMS5Sa restriction factor has

Rhesus TRIMS5 v restricts HIV-1 while human TRIM5 v has only weak

restriction.
Phylogenetic analysis identified a 13-aa patch with many positive-selected sites.
Functional studies of chimeric TRIM5 v genes demonstrated that the patch was
largely responsible for the difference in function. (Sawyer et al 2005)



Exercises with codeml

Focus:

ML estimation with site models



Branch-site codon model A (Yang et al 2005)

Neutral class

wo< 1 pl

Conserved class
p0

Variable class 1
p0(1-p0-p1)/(p0+p1)

Variable class 2
p1(1-p0-p1)/(p0+pl)



LRT for positive selection
based on branch-site codon model

Null: Alternative:
Model A Model A
®, = 1 fixed ®, 2 1 estimated
/s ‘s

~N S

LRT statistic 2({, — /)

~J

212
S Xo T2 X

Foreground branches (with w,) are defined a priori



Gorilla

Homo
I_ e ECP
| E Macaca f.
| Macaca n.
Pongo
Pan
Homo
Gorilla
: Pongo
Hylobates EDN
Macaca n.
Papio
Cercopithecus
Macaca f.

0.1

Fig. 3. Gene tree for 15 sequences from the ECP-EDN gene
family. The topology was obtained by using maximum likelihood
analysis under the HKYS8S substitution matrix combined with a
correction for among-site rate variation (discrete gamma model).
The scale bar indicates the mean number of substitutions per nu-
cleotide site. The open circle indicates the duplication event that
gave rise to the ECP and EDN genes. Under Model D, a fraction of
sites was allowed to evolve under divergent selection pressure, with
@ a and eng for the two paralogous clades, respectively.

Figure from Bielawski and Yang (2004)

To test for selection
after gene duplication:
branches of one clade
following the duplication
event are set as
foreground




Testing multiple hypotheses

Test one branch at a time?

H.
H:

Are p,, p,, P3, P4, Ps Significant at an overall threshold o.?

Adjust individual thresholds o, a,, a5, o, O«

so overall type | error rate < a

Anisimova & Yang (2007), MBE



Multiple testing correction: FWER or FDR?

Family-Wise Error Rate (FWER): overall type | error (FP rate)

FWER = Pr (reject at least one null when it’s true)
For n independent true null hypotheses tested at a:
FWER=1-(1-qa)"

e.g. testing 10 hypotheses at 5% each we may get FWER=40%!

If in some cases the null hypotheses is expected to be wrong,
small percentage of false rejections is tolerable

FDR = False Discovery Rate
FDR = E(# false rejections/# all rejections)



Example: how do FWER and FDR compare

100 simulated datasets with first 6 null hypotheses true
For each sample, test 10 hypotheses, making 1 error per sample

Test results: 1=sign / 0=not sign
1 0000011111
2 0100001111
3 0000101111

100 0100001111 FDR = 20%
TTTTTTFFFF  FWER = 100%



Multiple branch-site LRTs example:
CD2 extra-cellular domain

1 .
Rat Multiple LRTs
Anisimova &Yang 2007

Mouse

5.8
Horse

Human

Chimp

0.8

Rat Free-ratio model
0.5

Mouse Lynn et al. 2005

Horse
1.9 Cat
Pig

Cow

0.4 Rh Monkey

Baboon



All but two sites
under positive
selection are found
in the extra-cellular

domain of CD2

FIGURE 3.—

The three-dimensional structure of human CD2 extracellular domain [Protein Data Bank (PDEB)
hittp:/fwww.resb.org/pdb/entry=1HNF]. Sites shown in red are those sites predicted to be under
positive selection {model 8). The sites are labeled according to the numbering scheme used in the
PDB file (ALAS corresponds to site 14 in Table 1). Sites known to be involved in CD58 binding are
shown in blue. A and B show two opposite faces of the CD2 molecule. The structure was displayed
using RasMol V2.7.2.1.1 (hittp:/’mww.openrasmol.org/software/rasmaol/).



Figure by Simon Whelan

—H 0 O >

Alternatively, use covarion models

_LE

{

ACGT

1]
3

Rate = 0.5

Seql
Seq?2
Seq3
Seqg4
Segh
Segb6
Seq’
Seq8

—H 0O >

TCTTTATTGACGTGTATGGACAATTC
TCTTTGTTAACGTGCATGGACAATTC
TCCTTGCTAACATGCATGGACAATTC
TCTTTGCTAACGTGCATGGATAATTC
TCTT—TAACGTGCATAGATAACTC
TCAC——TAACATGTATAGATAACTC
TCTCTTCTAACGTGCATTGTGAAGTC
TCTCTTTTGACATGTATTGAAAAATC

ACGT ACGT

—1 OO >

Rate = 1.0 Rate = 2.0



— OO0 >r

Time
H O O >

Rate = 1.0
ACGT

Slide by Simon Whelan Rate = 2.0




Markov Modulated Codon Model

0: if codons ¢ and j differ at more Guindon et el. 2004 PNAS
than one nucleotide position '

W, TT;: NONsynonymous transversion

Q. =) "

"1Tj-: synonymous fransversion

K@, T;: NoNsynonymous transition ~ (P2 + p3a) P2 P3c
e s " R=35 P —(p1 + P3B) Py
\ IE YNonymous fransition
P pP2B —(p1ax + p2P)
Q, describes instanteneous rates for sites R describes rate switches between selection
from selection regime x i 2 e B (e @ E @ |
Codon models M2 and M3 are considered P, P, P5 are equilibrium frequencies of sites
(each has 3 classes of sites) in each selection regime (add up to 1)

a is relative rate of changes between 1 and 3
B is relative rate of changes between 2 and 3

Combined process:

Q 0 0 — (p2 + paa)l pal paal
S=|10 Q, 0|+8 pil — (p1 + p3B)l P3Pl
0 0 Qs pial p2B1 — (pra + pyp)1

o0 is the rate of switch between selection regimes



Markov Modulated Codon Model

Site model

with 3 classes

(3 selective regimes)
A

Proporti f sit
NE
e




LRTs of temporal variation in selection

H,: 0=0 (no switches btw regimes or M3)
Hi: 00

0 : 0 =0 (no switches btw regimes)

H,;: B= a=1 (switching but no bias in switching pattern)
H,: B= a =1 (no bias in switching pattern)
H,: ,B;t

Model notations: +S1(B=a=1)
+S2 (= a are free)



Guindon et el. 2004 PNAS

Table 1. Likelihood analysis of eight HIV-1 env gene sequence data sets

LRTs of temporal variation in selection

Significant at 5%

M2 M2+51 M2+52 M3 M3+51 M3+52
P1
InL —3,050.46 —3,021.78 —3,019.93 —3,036.87 —3,021.15 —3,019.13
w1 W2 W3 0.00 1.00 8.31 0.00 1.00 5.40 0.00 1.00 10.01 0.151.22 7.50 0.04 0.91 8.62 0.04 0.71 9.43
pP1 P2 Pa 0.39 0.56 0.04 0.67 0.29 0.05 0.64 0.32 0.05 0.70 0.26 0.03 0.69 0.26 0.05 0.60 0.35 0.05
P2
InL —3,672.49 —3,652.61 —3,651.67 —3,658.85 —3,652.30 —3,651.23
W1 W2 W3 0.00 1.00 4.39 0.00 1.00 3.86 0.00 1.00 4.47 0.151.14 3.85 0.06 1.36 4.23 0.03 0.49 3.98
p1 P2 Pa 0.30 0.62 0.07 0.57 0.33 0.10 0.55 0.38 0.08 0.58 0.37 0.06 0.65 0.28 0.07 0.46 0.42 0.13
P3
InL —3,205.90 —3,171.99 —3,169.07 —3,184.05 —3,165.13 —3,162.80
W1 W2 W3 0.00 1.00 5.20 0.00 1.00 5.07 0.00 1.00 14.17 0.19 2.10 5.95 0.00 2.92 9.99 0.00 2.83 13.82
p1 P2 Pa 0.36 0.49 0.15 0.71 0.15 0.14 0.75 0.20 0.05 0.73 0.22 0.05 0.78 0.18 0.03 0.79 0.19 0.02
P5
InL —3,889.82 —3,819.30 —3,817.56 —3,838.40 —3,816.79 —3,815.98
W W2 W3 0.00 1.00 11.88 0.00 1.00 10.01 0.00 1.00 10.44 0.141.04 7.34 0.051.71 11.51 0.05 1.3910.80
pP1p2 Pa 0.350.62 0.04 0.73 0.23 0.03 0.710.26 0.03 0.77 0.20 0.04 0.84 0.14 0.02 0.79 0.18 0.03
P7
InL —-4,121.97 —4,060.46 —4,057.37 —4,084.47 —4,050.26 —4,049.37
W1 W2 w3 0.00 1.00 8.40 0.00 1.00 11.61 0.00 1.00 11.81 0.322.7011.84 0.19 3.29 14.56 0.17 3.07 15.09
pP1 P2 Pa 0.250.63 0.12 0.61 0.32 0.07 0.58 0.35 0.07 0.790.170.04 0.830.13 0.04 0.81 0.14 0.05
P8
InL —4,174.14 —4,098.80 —4,092.67 —4,136.79 —4,095.89 —4,090.22
N w2 w3 0.00 1.00 5.34 0.00 1.009.20 0.00 1.00 15.05 0.101.03 4.17 0.031.419.93 0.05 1.06 14.85

0.38 0.53 0.09 0.68 0.27 0.05 0.68 0.29 0.03 0.64 0.28 0.07 0.740.22 0.04 0.71 0.26 0.03

P1 Pz P3



I .02

— |
_L—_iilﬂm Fig. 1. Phylogenetic positions of substitutions inferred at two amino acid
] - o sites of patient 6 data set. M3 strongly supports the hypothesisthat sequences
evolved under positive selection at these sites, whereas the statistical support
- 10 o given by M3 451 to the same hypothesis is less important. % and @ correspond
_{_—i to the substitutions inferred at sites 41 and 180, respectively. All of these
1a = 9 substitutions are likely to be nonsynonymous. The leaves of the tree are
e [ — labeled with the rank of the corresponding sample time (1 is the earliest
— "? 7 sample and 10 is the latest). The position of the root was determined by using

10 outgroup sequences collected during the earliest stages of the infection.

For each site, the expected time spent in selection class z
on the branch of length T, which had selection regime x at
the start and y at the end:

4 T-1
E[dZ(T,_x,y)] _ fT pxz( )pzy( )dt
©  p, (D
where p_(7) is the probability of change x — y over time ¢

[calculate p (f) from P, (#) = exp(tR)]

Pr(z1T,x,y) = Eld (T,x,y)l/T

This approach is used to detect sites in the alignment
where positive selection is likely to have occurred in most
of the lineages

Guindon et el. 2004 PNAS



Two decades of large-scale selection scans

Inferring Nonneutral Evolution
from Human-Chimp-Mouse

Orthologous Gene Trios
Open access, freely available online PI.pS BIOLOGY

Andrew G. Clark,’ Stephen Glanowski,®> Rasmus .. 2005
Paul D. Thomas,* Anish Kejariwal,* Melissa A. A Scan for POSItlvely S@IQCted Genes

David M. Tanenbaum,® Daniel Civello,® Fu Lu,’ Brii . .
Steve Ferriera,® Gary Wang,® Xiangzun zh« IN the Genomes of Humans and Chimpanzees

Thomas ). White,® John ). Sninsky,® Mark D. A . \ s . s
Rasmus Nielsen ‘“, Carlos Bustamante , Andrew G. Clark™, Stephen Glanowski", Timothy B. Sackton”,

. 116
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Large-scale selection scans step-by-step

DNA CDs library AA library
CDs from complete genomes /databases
—— —
= — hpall — —
R o —— =
— < —— ——
— — s - — E—
— —
Homologous gene clusters
MSAs (both AA and CDs) g :
(unaligned AA data)
— — —
— — —
— R ——
P — — —
“m = — = . -
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Natural selection in Streptococcus

Anisimova et al 2007 BMC Evol Biol
12 complete genomes
Positive selection in 136 genes:

29% connected to virulence
10% no ascribable function
7% essential to S. pneumoniae
19% with body-site specific
patterns of gene expression
during invasive disease in S.
pyogenes (infected blood,
cerebrospinal fluid,
epithelial cell contact)

S. agalactiae

S. mutans

Positive selection affects both core and accessory genes,
most likely due to the antagonistic interaction between host and parasite.

Products of both core and auxiliary genes participate in complex networks that
comprise the molecular basis of virulence.



Listeria phylogenomics
Mapping selection to phenotype

A: Gene-level data analysis B: Phenotype-level data analysis

Null model (1 parameter):
Ho: o, = 0, =y
Alternatives (2 parameters):
Hy: o = 0, =,
H,: o, = w, # w,

Hy: 0, = 0, » o,

From Dunn et al 2009, MBE

Niche-1 Pathogens

Niche-2 Pathogens

Non-pathogenic
Outgroup(s)

Blue box identifies a module in the metabolic network.
Red links in the expanded view of this module indicate a
significant cluster of genes subject to niche specific
selection in “lineage |” of L. monocytogenes.



Multiple LRTs: scan of mammalian genomes

B A 0.05 D
0.243 substisite
E = human ' ,
0.202
b[ 0172 | Eﬁgmp & branch-specific o E
macaque’(
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Multiple LRTs: scan of mammalian genomes

Kosiol et al (2008)

Height

10 08 06 04 02 00 Sensory Perception

— single fertilization
— Cytolysis

Dissimilarity measure:

cellular defense response _ do=1- IN(A)N(B) |
E;;";fts'mm "9 2 PIESENEON. petense “7 min{IN(A)LIN(B) I}
response to bacterium

Hierarchical clustering of GO categories (biological process)
over-represented with genes under positive selection



Which proteins are under positive selection?

Host proteins involved in defence or immunity against
viral, bacterial, fungal or parasite attacks (MHC,
immunoglobulin VH, class 1 chitinas).

Viral or pathogen proteins involved in evading host
defence (HIV env, nef, gap, pol, etc., capsid in FMD virus,
flu virus hemagglutinin gene).

Proteins or pheromones involved in reproduction
(abalone sperm lysin, sea urchin bindin, proteins in
mammals)

Proteins that acquired new functions after gene
duplication.

Miscellaneous (diet, globins,etc. )






Detecting positive selection

Pairwise methods — very low power

Branch models allow variation over time but assume
one w for all sites - low power

Site models allow variation among sites but assume
selection pressure does not change over time — have
higher power if positive selection is long term

Branch-site models may be more successful at
detecting episodic selection but are more difficult to
fit, require more data and often have multiple sub-
optimal peaks (caution with genome scans!)



Testing for positive selection

LRT is accurate even for small datasets

Power of LRT is better for larger datasets

Watch out for recombination

Accurate parameter estimation is more difficult,
depends on model assumptions

Bayesian site prediction is even more difficult than LRTs
and parameter estimation

There is an optimal window of sequence divergence
(sequences should be not too similar and not saturated)
Robustness of results: Use several models & tests
Check for local optima, especially for complex models



Weaknesses of methods based on codon models

Model assumptions may be unrealistic (but some
assumptions matter more than others)

The method detects positive selection only if it generates
excessive nonsynonymous substitutions. It may lack
power in detecting one-off directional selection or when
the sequences are highly similar or highly divergent.
Little power with population data.

Do not work for noncoding DNA (but see Wong & Nielsen
2003 Genetics)

Sensitive to sequence and alignment errors
(Fletcher & Yang 2010 Mol Biol Evol 27;
Privman et al. 2011 Mol Biol Evol 29;
Jordan & Goldman 2012 Mol Biol Evol 29)



Criticisms on codon models

by M. Nei, Y. Suzuki, & A.L. Hughes
Hughes AL. 2007. Looking for Darwin in all the wrong
places: the misguided quest for positive selection at the

nucleotide sequence level. Heredity 99
Nozawa, Suzuki & Nei. 2009. PNAS 106

Yang Z, dos Reis M. 2011. Statistical properties of the
branch-site test of positive selection. Mol Biol Evol 28

Zhai W, Nielsen R, Goldman N, Yang Z. 2012. Looking for
Darwin in genomic sequences - validity and success of
statistical methods. Mol Biol Evol 29

MacCallum, C. & Hill, E. 2006 Being positive about
selection. PLoS Biol 4, e87



Input data Anisimova and Liberles (2007)

Population level Species level

l

Timeframe
of data divergence?

Use population N
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(DNA-level methods)
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The many faces of codon models

e Detecting selection

e Studying codon bias

* Inferring phylogenies

* Dating speciation events

* Ancestral reconstruction

* Changes in time & space

* Predicting coding regions
* Improved alignment

* Inferring gene features
(phyloHMM, netHMM)

e Simulation of data

Site model
with 3 classes

f (3 selective regimes)
human i

%,
chimp -

&
macaque
@y 1 o,
mouse 1 ﬁ

ratl %

]
rat 2 %

Markov modulated model:
Guindon et al. 2004

Reviews of codon models:
Kosiol and Anisimova 2012
Anisimova and Kosiol 2009



Selection affects the shape of tree

Influenza A

Smith et al. 2004 Science

EN72 O
VI7s O
TX77 @
BK79 ©
SI87 @
BE89 @

BE92 ©
WU95 @
SY97 ©
FUuo2 @

0.1

:

Selection Neutral
HIV-1 subtypes

Archer, Robertson 2007, AIDS




.i CodonPhyML :
maximum likelihood tree inference

Hundreds of codon models
 Parametric, empirical, semi-parametric
e Comparable likelihoods across AA, DNA, codon data

High performance computing
 BLAS, LAPACK, OpenMP

e Heuristic using exp(Qt) via Taylor
e Blocking heuristic (FixQ)

Anisimova, Gascuel 2006 Syst Biol
Guindon et al. 2010 Syst Biol

Anisimova et al. 2011 Syst Biol
Gil et al. 2013 Mol Biol Evol



CodonPhyML:
Model & tree comparison on real data

Model types: DNA, AA, codon
E = empirical, SP = semi-parametric, P = parametric

Codon model fits worse: Codon model fits better:
PDNA = el S— . Better
i L J " (different)
Likelihood diffelence :
(AlICc) )
E codon
0 Same
P codon | L. Worse
- N\ K | N |
SP P

DNA AA codon codon codon DNA AA codon codon codon
Gil et al 2013, Mol Biol Evol



CodonPhyML: evaluating inferred splits

22 mammalian species
72 protein orthologs

o _ o _
© © _
o _| o _|
) Ts)
= Q- Amino acid = 9 - Codon
S o _ model - 8 o | model
o O > O
o - o
i L - L ] -
o | L I o _|
o i n|=|-..-.l'l.-.-.-.-.-|=|-a=rH: o Bed] el HE
| | | | | | | | | | | | | | | |
0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9

aBayes support (Anisimova et al 2011, Syst Biol)

Unpublished, Anisimova



http://sourceforge.net/projects/codonphyml

Summary Files Reviews Support Wiki Discussion Donate Code Bugs

@®®2 codonPhyML

t +

e s anisimova, laduplessis, mgil_, mszanetti, stefanzoller

¥ 6 Recommendations
< 85 Downloads
{51 Last Update: 4 hours ago

1"1'/ ‘d “_ 5 Browse All Files

Volume 30 * Number 8 ¢ August 2013

OLECULAR
IOLOGY anp

W Tweet < 0 g+)<0 EiLike 0

Description

codonPhyML uses Markovian codon models of evolution in phylogeny reconstruction. Given a set of
species characterized by their DNA sequences as input, codonPhyML will return the phylogenetic tree that
best describes their evolutionary relationship. Our paper describing codonPhyML has been accepted for
publication in the journal "Molecular Biology and Evolution". For more details, follow the link: :
http://mbe.oxfordjournals.org/content/early/2013/02/23/molbev.mst034.short. sosry for

@ Effects of domestication on brain expressions in dogs

@ Epistasis among antibiotic resistence variations
@ Evolution of duplicated genes
@ Experimental method for finding transcription start sites

R e @ High-altitude adaptations in Ethiopians and Tibetans






Remaining exercises

Focus:

ML estimation with branch-site models
Try out with codon tree (CodonPhyML)



