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CHAPTER 6

Detecting and understanding natural
selection
Maria Anisimova and David A. Liberles

6.1 Selective mechanisms operating on
gene sequences

More than 150 years after the publication of Dar-
win’s Origin of species, natural selection continues
to be the dominant explanation for the pheno-
typic variety of living organisms on earth. In recent
years, the wealth of comparative and functional
genomic studies demonstrated a number of differ-
ent ways in which natural selection operates on
gene sequences. Molecular evolutionary processes
are driven by mutations in a single individual in a
population. They occur in genomic regions of dif-
ferent functions, from those that code for proteins
to those that regulate the expression of proteins
and other regions. Mutations themselves can range
from single nucleotide changes, insertion or dele-
tion events to gene and chromosome duplication or
rearrangement events. As these events occur in an
individual, their net selective effects, including the
selective effects of linked changes, may increase or
decrease an individual’s fitness compared to other
individuals in a population, which then dictates the
probability of fixation of a new mutation given the
population size (see Chapter 7).

At the molecular level, several types of selection
may be distinguished (Figure 6.1). Positive selection
acts upon advantageous mutations (with selec-
tion coefficient s > 0), reflecting the preferential
fixation of mutations with a higher probability com-
pared to the random expectation for a given pop-
ulation size. For inter-species data, positive selec-
tion that favours recurrent fixation of amino acid
changes is known as diversifying selection. Diver-
sifying selection is often the molecular mechanism
to avoid host recognition. For example, the evo-

lutionary arms race drives diversifying changes
in poliovirus PV1 to keep the recognition of the
host’s receptor, which in turn mutates to avoid
binding (Figure 6.1b; Zhang et al., 2008). Directional
selection eliminates variation within populations,
increasing the frequency of the beneficial mutation
and leading to its fixation. Environmental adap-
tation in bats is one such example (Figure 6.1a;
Tellgren-Roth et al., 2009). In population data, posi-
tive selection may manifest itself through balancing
or frequency-dependent selection, which increases
variability within a population due to a fitness
advantage to maintain a polymorphism. Classic
examples include balancing selection in immune
system molecules (e.g. mammalian Major Histo-
compatibility Complex; Hughes and Nei, 1988), dis-
ease resistance loci (e.g. human genes associated
with malaria resistance (Kwiatkowski, 2005), R pro-
teins in plants (Van der Hoorn et al., 2002), and
in the sex locus in honey bees (Figure 6.1d; Cho
et al., 2006). These are cases where diversity across
the population is favoured and rare alleles gain in
frequency until they are no longer rare. In the case
of the immune system, rare alleles are less likely
to have generated neutralizing resistance mutations
from pathogens in the evolutionary arms race. In
honey bees, to prevent inbreeding, drones with
rare alleles are more likely to find queens with
different alleles (Cho et al., 2006). Another type of
positive selection that affects populations is the
selective sweep, whereby a new advantageous
mutation reduces variation in linked neutral sites
(known as the hitchhiking effect) as it increases in fre-
quency and is fixed in the population. One famous
example of a selective sweep is the development of
lactose tolerance in humans in response to dietary
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change (Figure 6.1e; Tishkoff et al., 2007). In con-
trast, negative or purifying selection acts against low-
fitness changes (s < 0), most often conserving the
amino acid sequence. This type of selection is most
common and affects the majority of proteins. Puri-
fying selection was implicated in the conservation
of the protein sequence of the melanocortin 1 recep-
tor (MC1R) locus in human African populations.
This ensured that dark skin colour was maintained,
as it was important for survival with prolonged
sunlight exposure after the loss of body hair (Fig-
ure 6.1g; Rogers et al., 2004).

When developing new models and methods to
detect selection, features of selective forces on pro-
teins need to be considered. Most proteins have
either solely a binding function or can both bind
and catalyse a reaction on at least one of the bound
entities (enzymes). Proteins bind mostly to either
large biological macromolecules, like other pro-
teins and nucleic acids, or to small molecules. The
rules of binding to proteins and to small molecules
appear to be different. For protein–protein inter-
actions, affinity tends to derive from hydrophobic
patches on the surface, while specificity derives
from localized charged residues (Pechmann et al.,
2009). There are of course, exceptions to this. In
binding small molecules the rules are less clear,
where van der Waals’ interactions are important for
affinity, and a number of factors, including charge
and steric fit, affect specificity. There are larger
level concerns governing the degree of specificity.
For example, a hydrophobic patch without charge
is expected to be fairly non-specific in its interac-
tions. Further, the kinetic flexibility of a binding
pocket will also affect specificity (DePristo et al.,
2005). Disordered regions reflect an extreme case of
this, where refolding upon binding can give speci-
ficity by deriving energy from the conformational
shift from a lower energy disordered state. This
can also enable allosteric coupling of binding events
mediated by disorder (Hilser and Thompson, 2007).
Ultimately, specificity of binding appears to be an
important part of biological selection, where there
is selective pressure not only on what to bind, but
also on what not to bind (Liberles et al., 2011).

Within this opaque rule structure, positive selec-
tion acting upon a binding partner of a protein
may affect its function in several ways. For exam-

ple, the change of lysine to aspartic acid in a
binding pocket can be predicted to have an effect
on the affinity of potentially bound molecules.
The classic case in enzyme specificity involves
the modulation of pocket size and charge in the
trypsin/chymotrypsin/elastase gene family, where
trypsin prefers positively charged amino acids,
while elastase prefers small amino acids.

In addition to folding and binding, selection
also occurs on catalysis for enzymes. However,
it appears to be easier to shift substrate (binding
partner) than enzymatic reaction class or mecha-
nism. In fact, enzyme specificity appears to be dif-
ficult to achieve, often with ‘moonlighting’ reac-
tions (secondary reactions that are carried out at
lower enzymatic efficiencies). Gene duplication is
one process that enables optimization of a sec-
ondary reaction while maintaining a paralog that
catalyses the original reaction. Copley (2009) has
suggested that this process is a common mechanism
by which bacteria evolve the capacity to metabolize
anthropogenic compounds. In this case, multiple
enzymes may be co-opted in the process of linking
up metabolites to existing pathways in the species.
This may be a mechanism by which new path-
ways are established. Classically, two hypotheses
have been presented for the formation of new path-
ways. In the retrograde evolution model, enzymes
evolve by changing catalytic mechanism, while
maintaining binding to a substrate that becomes a
product (Horowitz, 1945). Under this mechanism,
pathways are built up backwards with substrate
depletion conferring a selective advantage to indi-
viduals that can now produce the substrate. In
the patchwork model (consistent with Copley’s
examples), enzymes maintain catalytic mechanism,
but carry out reactions on new substrates (Jensen,
1976). In a systematic study of E. coli metabolism,
Light and Kraulis (2004) suggest that the patchwork
mechanism dominates.

Currently, selection is typically studied at the
level of the individual gene or protein. Ultimately,
however, selection acts on the inputs and out-
puts of pathways. Ardawatia and Liberles (2007)
have examined average selective pressures across
pathways in mammals based on dN/dS estimates
(see Chapter 2) for gene families. It is not clear
that selection needs to act on multiple members
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Figure 6.1 Types of natural selection at the molecular level.
Natural selection is an important biological force shaping genetic patterns in molecular data. Distinct selective mechanisms are often responsible for
morphological and behavioural evolution, the origin of evolutionary innovations, emergence of competition, environmental adaptations, and the evolution
of complexity. Depicted are examples of different types of selection.
(a) Environmental adaptation: directional selection in plasminogen activators of vampire bats due to the transition in feeding behaviour from bird
to mammalian blood (phylogeny picture from Tellgren-Roth et al. (2009), copyright © Springer; used with permission). The vampire bat picture was
provided by Daniel Abram from Rancho Transylvania (New Mexico, USA). (b) Evolutionary arms race: diversifying positive selection in poliovirus
PV1 to maintain the recognition of the host receptor, which in turn mutates to escape binding. From Zhang et al. (2008), © 2008 National Academy of
Sciences, USA; used with permission. (c) Speed-dependent protein folding: the folding pathways are drawn as step-by-step arrows on the
simplified folding funnel surface. Without a pause at S1, fragment B folds before fragment A; then, fragment A folds on fragment B with an A1
conformation. On the other hand, with a synonymous mutation in S1, the pause enables A2 to fold first, and fragment B follows. The folding branches due
to a pause in sequential folding, eventually lead to the bottom of the funnel with a minor conformational change between them. The figure and the
description are reprinted from Tsai et al. (2008) © 2008 Elsevier; used with permission. (d) Sex-determination: balancing selection in honey bees.
To prevent inbreeding, drones with rare alleles are more likely to find queens with different alleles (Cho et al. 2006). The phylogeny is from Cho et al.
(2006) © 2006, Cold Spring Harbor Laboratory Press; used with permission. Bees photograph taken by Zachary Huang (Michigan State University;
http://www.beetography.com) and kindly provided by Soochin Cho (Creighton University). (e) Dietary change: lactose persistence due to positive
selection on LCT gene in African populations (adapted from Tishkoff et al. (2007) and reproduced by permission from Macmillan Publishers Ltd: Nature
Genetics, © (2007). (f) Codon bias due to tRNA re-usage: codons using the same tRNA tend to be re-used for the same amino acids in close proximity.
From Cannarozzi et al. (2010), adapted and reproduced with permission from Elsevier. Depicted are the diffusion and channeling models suggested by the
authors. The tRNA diffusion away from the ribosome is slower than translation, and some tRNA channeling takes place at the ribosome. The ribosomal
shape is drawn based on the crystal structure of the bacterial ribosome with tRNA to scale (Schuwirth et al., 2005). (g) Survival in adverse climate
conditions: the MC1R locus was affected by strong purifying selection in African populations, since maintaining dark skin color was important for
survival with prolonged exposure to sunlight after the loss of human body hair earlier along the human lineage (Rogers et al. 2004). Depicted is the skin
color map for indigenous people predicted from multiple environmental factors—produced by Emmanuelle Bournay, UNEP/GRID-Arendal
(http://maps.grida.no/go/graphic/skin-colour-map-indigenous-people). Data source: Chaplin G., Geographic distribution of environmental factors
influencing human skin coloration. American Journal of Physical Anthropology 125:292–302, 2004; map updated in 2007.
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of a pathway to achieve an effect, as changes
to activities of key members of pathways can
alter metabolic fluxes. Modularity emerges, per-
haps non-adaptively, in simulations of pathway
evolution (Soyer and Bonhoeffer, 2006). Such evolu-
tionary dynamics can have important downstream
effects on evolvability and adaptive potential (for
discussion see Teufel et al., 2012). An important
future direction will be to improve our understand-
ing of selective pressures at the pathway level.

Gene duplication itself provides increased oppor-
tunities for selection. This has been reviewed exten-
sively elsewhere (Liberles et al., 2010; Roth et al.,
2007). The duplicates themselves can be under
selection. For example, if increased expression of
a product is desired, selective pressure will act to
retain a duplicate. An interesting example of this
involves the amylase protein in the human popu-
lation (Perry et al., 2007). Conversely, the dosage-
balance model provides selective pressure to elim-
inate duplicates that are not co-duplicated with
interacting partners (Hughes et al., 2007). One mole-
cular mechanism underpinning this may be dom-
inant negative effects. Further, most models of
gene duplication assume that the initial duplica-
tion event is neutral. A calculation from Wagner
(2010) suggests that the metabolic cost of extra
gene expression is, in fact, deleterious at a level
that would show effects reaching to small popula-
tion size organisms. This suggests that any retained
duplicates were kept through sufficiently strong
positive diversifying selection.

While in most cases of reported selection the
change is observed at the protein level, both positive
and negative selection may also be observed at the
DNA level (either on silent codons and non-coding
sites). Negative selection is known to cause strong
codon bias, which works to optimize translational
accuracy, efficiency, and robustness, as well as to
provide control for optimal gene expression (e.g.
Duret, 2002). Codons are known to be unequal in
their usage in organisms, although the bias is not
universally conserved across species. Codon usage
bias correlates with tRNA concentration, where the
more common codons have a higher concentration
of cognate tRNA (e.g. Rocha, 2004). It has further
been shown that codons using the same tRNA tend
to be re-used for the same amino acids in close

proximity (Figure 6.1f; Cannarozzi et al., 2010). This
is due to an increased effective local concentration
of the tRNA, even if it is not the tRNA with the
highest cellular concentration. Genes expressed at
high levels tend to use more common codons, pre-
sumably to reduce the waiting time for a tRNA
to occupy the site. This serves three purposes: to
increase the rate of expression, to decrease the
rate of mistranslation due to the occupancy of an
open site by a non-cognate tRNA, and to control
kinetic processes of protein folding during transla-
tion. In this last case, it has been demonstrated that
a synonymous change can affect the ultimate folded
structure of the protein through this process, by
not ending up in the kinetically trapped wild-type
structure (Figure 6.1c; Tsai et al., 2008). In one exam-
ple, a silent polymorphism in the Multidrug Resis-
tance 1 gene affects the substrate specificity of P-
glycoprotein (Kimchi-Sarfaty et al., 2007). Evidence
for co-translational folding suggests that the speed
of translation may affect the eventual 3D structure
and the function of the protein (Komar, 2009), with
rare codons used to slow down translation to obtain
optimal folding. In this case, for certain codons
(e.g. between distinct structural domains) a diverse
choice of non-optimal codons may be favoured
(if ribosomal pausing has increased fitness bene-
fits), driven by positive selection on the DNA. In a
systematic analysis of mammalian orthologs, pos-
itive selection on synonymous sites was inferred
for 12% of the analysed genes, and was found
to correlate with lower predicted mRNA stability
compared to genes with negative selection on syn-
onymous sites (Resch et al., 2007). Thus mRNA
destabilization (affecting mRNA levels and trans-
lation) could be another important factor driving
positive selection on synonymous sites. It should
be noted that most discussion on selection focuses
on primary selection, where there is a direct selec-
tive effect of the substitution. However, there have
been several important suggestions of secondary
selection, where the selective pressure provides
a buffer against deleterious mutation, acting by
selecting for processes that either prevent or buffer
the effects of deleterious mutational events. Sec-
ondary selection is expected to be strongest in
organisms with high mutation rates and large pop-
ulation sizes, where there is an increased chance of
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specific deleterious mutations and where the power
to select for mechanisms to prevent them is greatest
(Elena et al., 2007; Forster et al., 2006). One impor-
tant mechanism of secondary selection that has
emerged is the hypothesis of selection for more sta-
ble proteins to prevent mistranslation-induced mis-
folding (Drummond and Wilke, 2008; Wilke and
Drummond, 2010). This involves selection on syn-
onymous sites not only for the speed, but also the
accuracy of translation and the mutation induced
by mistranslation.

We continue by discussing a range of statisti-
cal methods used to study selection in molecular
sequences based on inter-specific comparisons or
within a population. Several methodological chal-
lenges are outlined, and common misconceptions
of the statistical modelling are discussed in the con-
text of detecting selection. Finally, we briefly review
recent conclusions from large-scale genomic studies
and their applications in the emerging field of the
evolutionary medicine.

6.2 Brief overview of statistical
methodologies for detecting positive
selection

Statistical methods for detecting selection may be
roughly classified according to the type of data
under consideration. Population genetic samples
typically consist of very similar sequences, where
most suitable methods study the frequency spec-
trum of mutations, including neutrality tests or
methods explicitly based on population genetic
models. Maximum likelihood (ML) and Bayesian
methods based on codon models are most appro-
priate at the intermediate divergence ranges and
are typically applied to intra-specific samples (e.g.
Anisimova et al., 2001). On the other edge of the
evolutionary spectrum are datasets of homologous
genes separated by deep evolutionary times. Here
methods based on codon models lose their appeal
since dN/dS becomes ineffective as dS reaches satu-
ration (but see Seo and Kishino, 2008, 2009). Because
of multiple hits, the ability to accurately measure
dS decreases above values of 2–3 expected substitu-
tions per site. When this occurs, the most powerful
methods to measure selection become methods that

detect rate shifts during the evolutionary history of
a sample.

6.2.1 Neutrality tests based on frequency
spectrum

With the rise of the neutral theory (see Chap-
ter 2), tests for neutrality became very prominent
and continue to be widely used. Tajima’s test cal-
culates statistic D as a scaled difference between
the estimates of population-scaled mutation rate Ë,
one from the number of pairwise differences and
another from the number of segregating sites in
a sample (Tajima, 1989). Selection, demographic
changes, genetic hitchhiking, and other violations
of the neutral model will affect the two estimates
differently, causing significant deviations of D from
0. However, the test may be rejected for various
reasons. Estimates of D < 0 may indicate negative
selection, including selective sweeps but also pop-
ulation expansion, while estimates of D > 0 are
consistent with balancing selection, as well as
a population bottleneck. Similar to Tajima’s test,
other neutrality tests contrast different estimates of
Ë from the site-frequency spectrum of a sample (Fay
and Wu, 2000; Fu and Li, 1993). The stronger the
contrast between the two estimates in presence of
selection is, the more powerful the test of selection
is. Note that the power of a neutrality test may be
increased by the use of an outgroup, which helps
to distinguish ancestral and derived states for poly-
morphism data, but may also be problematic due
to inaccuracies of ancestral inference (Baudry and
Depaulis, 2003).

6.2.2 Neutrality tests based on variability
within and between species

The neutral hypothesis may be assessed by
comparing the variability within and between
species for two or more loci. The popular HKA
test evaluates whether levels of polymorphism and
divergence are proportional to the mutation rate,
resulting in a constant ratio of polymorphism to
divergence (Hudson et al., 1987). For example, the
HKA test was one of tests used to demonstrate
balancing selection in the honey bee in Figure 6.1d
(Cho et al., 2006). Like other tests based solely
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on simple summary statistics (e.g. Tajima’s D,
Fu and Li’s D and F , Fay and Wu’s H tests),
the HKA test is sufficiently powerful to reject
the strictly neutral model, but is sensitive to
demographic assumptions, failing to distinguish
the demographic processes from selective
forces. Conducting neutrality tests separately on
nonsynonymous and synonymous differences may
provide some additional insight into the interplay
of the forces operating on the protein-coding level.
In particular, the MK test (based on the idea of
HKA test) compares the ratio of nonsynonymous
to synonymous differences within and between
species, which should be the same in absence of
selection (McDonald and Kreitman, 1991). This test
is more robust to demographic assumptions, since
the effect of the demographic model is expected
to be the same for both nonsynonymous and
synonymous sites (Nielsen, 2001). Modifications
of the MK test were proposed to differentiate
between the types of selection (Akashi 1995, 1999b;
Templeton, 1996). For example, Akashi examined
the frequency distribution of observed synonymous
and nonsynonymous changes compared with the
neutral expectation. The power of this test is low
when selection is weak or with only few adaptive
mutations. Moreover, deviations from neutrality
may be equally attributed to changes in population
size (Eyre-Walker, 2002; Smith and Eyre-Walker,
2002). While the demographic process affects all
genomic loci, selection affects only some. Many
genome-wide studies used this argument to
separate the effects of selection and demography
(e.g. Thornton et al., 2007).

6.2.3 Poisson random-field models (PRF)

Unlike neutrality tests, PRF models explicitly
include mutation and selection parameters under
various population genetics scenarios (Akashi,
1999a; Hartl et al., 1994; Sawyer and Hartl, 1992).
The strength of selection is estimated from the
observed deviation of site-frequency distribution
(including entries of MK tables with synonymous
and nonsynonymous counts) from the expectation
under neutrality. On the downside, the assump-
tion of site independence means that selection
on linked sites is ignored, biasing estimates from

PRF models (Bustamante et al., 2001). A composite
likelihood (CL) approach allows the inclusion of
recombination and the relaxation of the assump-
tion of site independence (Zhu and Bustamante,
2005). The composite likelihood ratio (CLR) test for
selection showed good power to detect recurrent
directional selection and was relatively robust in
estimating the bias of the local recombination rate
but not of population growth or a recent bottleneck.
However, accounting for a suitable demographic
model makes the selection test more robust to basic
assumptions about demography (e.g. Williamson
et al., 2007). Moreover, PRF-based methods are
more powerful for multiple loci, since they provide
more information about species’ divergence time
and population sizes, which is common for all loci.
Because HKA, MK tests, and PRF models make the
infinite-sites assumption (where each new mutation
is observed at a different site), they are only appro-
priate for samples of low divergence.

6.2.4 Methods based on population
differentiation

Increased levels of subdivision in natural popula-
tions may be caused by selection. For example, if
geographical barriers cause population structure,
advantageous mutations may arise only in a sub-
population, or the fitness of existing allele changes
during the migration event in response to a new
environment. Thus, unusually high levels of genetic
population differentiation at one locus, compared
to other loci, may be interpreted as evidence for
positive selection (Lewontin and Krakauer, 1973).
Several neutrality tests measure the population dif-
ferentiation using the FST statistic and its variants
(Hudson et al., 1992; Shriver et al., 2004; Weir et al.,
2005). Levels of population differentiation may
be modelled and estimated using a sophisticated
Bayesian framework (Beaumont and Balding, 2004).
A recent human genome study detected selection
from patterns of allelic differentiation between two
populations (Nielsen et al., 2009), where the demo-
graphic model was first estimated and then used
to obtain the expected neutral frequency spec-
trum. Locus-specific outliers were considered to
have been affected by selection. Chen et al. (2010)
suggested a more rigorous treatment of allelic
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differences within both neutral and selection mod-
els. Based on patterns of allelic differences in two
populations, they used the CLR method to test for
selective sweeps. Using allelic differences makes
the method more robust to the ascertainment bias
(sampling bias caused by the process of the SNP
discovery), which affects all other methods based
on frequency spectra, population differentiation,
and linkage disequilibrium (Nielsen et al., 2005).

6.2.5 Methods based on linkage
disequilibrium (LD) and haplotype structure

Genomic regions with polymorphisms under bal-
ancing selection, or due to selective sweeps, may
increase (or reduce) the correlation between alle-
les from different loci, known as LD. An ongoing
incomplete selective sweep (advantageous muta-
tion has not yet fixed in the population) leaves a
special signature in the haplotype structure—the
presence of a high-frequency haplotype with high
LD. This is because there was little time for recom-
bination to occur during this rapid spread of a
haplotype containing the advantageous mutation.
Popular tests based on LD and haplotype structure
(Andolfatto et al., 1999; Depaulis and Veuille, 1998;
Hudson et al., 1994) now include more recent addi-
tions: the relative extended haplotype homozygos-
ity (rEHH; Sabeti et al., 2002), the integrated hap-
lotype test (iHS; Voight et al., 2006), and the LD
decay test (LDD; Wang et al., 2006). Related test
statistics detect geographically restricted selection
(Kimura et al., 2007; Sabeti et al., 2007; Tang et al.,
2007). However, once the sweep is complete, there
remains little variation to study LD patterns. In
addition, methods based on LD also heavily rely on
assumptions about recombination rates, as well as
the demographic model. Note that selective sweeps
and LD can be explicitly included in a popula-
tion genetic model using the CL method (Kim and
Nielsen, 2004; Kim and Stephan, 2002).

6.2.6 Methods based on detecting rate shifts

For divergent inter-specific samples, a popular
strategy is to detect substitution rate shifts dur-
ing the evolutionary history of a sample. Rather
than normalizing one rate by another rate that is

expected to be neutral, these measures look for site-
specific shifts in substitution rates along a branch.
The drawback compared to codon model-based
approaches (Chapter 2), is that selection is not
modelled explicitly. Also at the amino acid level,
there is not a stringent criterion to statistically con-
firm positive selection without pursuing further
functional and structural studies on detected sites.
While instances of rate changes may be often caused
by selection, they can be a result of other forces,
including compensatory covariation driven by pro-
tein structural constraints (Fukami-Kobayashi et al.,
2002; Philippe et al., 2003). Ultimately, rate-shift
models (like other phylogenetic models) assume
site-independence to model a process that is inher-
ently site inter-dependent, generating a model that
diverges from underlying biological processes and
also requiring higher order Markovian models that
are computationally hard. Signatures of rate shifts
may indicate that a gene has been affected by vari-
able selective pressures during evolution. When
positive selection occurs, one expects an increase
in the number of sites with rate shifts. In particu-
lar, rate shifts at generally conserved positions are
good predictors of functional divergence (Philippe
et al., 2003), most likely due to positive selec-
tion. Indeed, a study of covarion-like rate shifts
in Ensembl homologs found that sites with rate
shifts were frequently detected, but they were not
as often associated with positive selection (detected
based on codon models) compared to generally
conserved sites with rate shifts (Studer and
Robinson-Rechavi, 2010). Note also that a shift in a
substitution rate is not a necessary condition that
describes genes affected by positive selection. In
many genes, boundaries of functionally constrained
regions are relatively well conserved through time,
such as in immune genes, where positive selection
affects mostly the hypervariable antigenic regions
(as is in the example of the MHC mentioned above;
Hughes and Nei, 1988).

Numerous methods for detecting functional
divergence exist (for more detail see Anisimova
and Liberles, 2007). Similar to branch-site and clade
models (Chapter 2), they search for a lineage-
specific change (Blouin et al., 2003; Gaucher et al.,
2002; Landau et al., 2005; Lockhart et al., 1998;
Miyamoto and Fitch, 1995; Penny et al., 2001;
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Siltberg and Liberles, 2002). For example, site-
specific profiles based on a hidden Markov model
may be used to identify residues responsible for
functional differences between gene clusters (Gu
2001, 2006). Alternatively, with a priori partitioning
of a tree, rate estimates in distinct subtrees may be
compared using a LRT (Pupko and Galtier, 2002).
Covarion models of rate switching may be formu-
lated via a Markov-modulated processes (Galtier,
2001; Galtier and Jean-Marie, 2004; Huelsenbeck,
2002; Wang et al., 2007). While most tests for rate
shifts assume a priori partitioning of sequences
into groups with potential differences, several
approaches can infer specific sites and lineages
where rate shifts occurred (Dorman, 2007; Penn
et al., 2008).

Note that the power of methods to detect rate
shifts is low for sequences of insufficient diver-
gence or an insufficient magnitude of rate shifts. For
sites detected to have undergone a rate shift, adap-
tive substitutions affecting the function have to be
discriminated from neutral or those due to com-
pensatory changes based on further structural and
experimental studies. Apart from detecting candi-
date genes under positive selection, predicting a
functional shift from sequence data alone can be
useful for large-scale protein annotation (Abhiman
and Sonnhammer, 2005a, 2005b; Krishnamurthy
et al., 2006).

6.2.7 Detecting selection based on dN/dS

with Markov codon models

Unlike amino acid or nucleotide-based methods for
detecting selection, at the codon level the ability
to discriminate between synonymous and nonsyn-
onymous substitutions provides us with an objec-
tive way to measure selection and to differentiate
between positive and negative selection. Methods
based on estimating dN/dS and codon models were
discussed in Chapter 2. Clearly, they are the most
successful at detecting recurrent positive selection
in inter-specific samples, as they distinguish non-
synonymous and synonymous changes based on
the structure of genetic code. Such methods may
allow variation of selective pressure among sites
and during the evolution. Thus these methods
can be very informative about specific locations in
the protein affected by recurrent changes and can

detect lineages that were affected by selection dur-
ing certain episodes of time.

The effectiveness (the power) of methods based
on the dN/dS measure depends on the signal-to-
noise ratio present in data, which is defined not
only by divergence (Anisimova et al., 2001, 2002)
but also by the fraction of residues with the poten-
tial to impact function. This depends upon the
precise protein fold, the binding-site size, and the
surface-area-to-volume ratio of the protein. This
includes the contact-density hypothesis describ-
ing functional selection based upon the fraction of
residues required for protein–protein interactions
(for example see Zhou et al., 2008).

More intricate details of evolutionary specifics
have been added recently to the toolbox for selec-
tion studies provided by standard codon models
(Chapter 2). For example, better model fit may
be achieved by including empirically estimated
parameters that capture exchangeability patterns
between codons (Chapter 3). Using different amino
acid fitness profiles for sites, or including content
dependency, should make models more reliable
(Robinson et al., 2003; Rodrigue et al., 2010; Stern
and Pupko, 2006; Yap et al., 2010). Such so-called
semi-parametric models should increase the accu-
racy of inferences of selection. More recent codon
models may be used to study positive and negative
selection not only at the protein level, but also on
synonymous substitutions (Yang and Nielsen, 2008;
Zhou et al., 2010; see also Chapter 14).

To accommodate positive selection acting upon
a binding partner of a protein and so affect pro-
tein function (see 6.6.1), several strategies were pro-
posed in order to integrate related aspects of protein
function into a codon model. Biophysical parame-
ters can be integrated into codon models, explic-
itly characterizing the energetics of protein fold-
ing and binding interactions. The field has moved
from modelling proteins as lattices (Williams et al.,
2001) to forward (Rastogi et al., 2006) and backward
(Kleinman et al., 2010) parameterization of codon
models for coarse-grained approximations of real
proteins. Another class of models that is compu-
tationally simpler involves gross analysis of bio-
physical properties (McClellan and Ellison, 2010;
Woolley et al., 2003) that can easily be extended
from amino acid models to codon models to also
include types of synonymous substitutions.
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Binding interactions can be predicted using the
mirror tree method. This method looks for corre-
spondence of evolutionary rates between sets of
orthologous (or paralogous) proteins to identify
interacting partners. In the most common imple-
mentation, a distance matrix is built for potential
(orthologous) interacting partners and covariance
of the rates in the matrix are assessed. Because there
is an underlying species’ tree to the gene tree evolu-
tion, one improvement involves the use of expected
correlated branch lengths based upon the species
tree. Another approach is to examine regions of a
protein that may interact, where one expects the sig-
nal to be stronger, rather than examining an average
over the protein as a whole. A recent improvement
to this method uses selective pressures based upon
codon models rather than rates to evaluate corre-
spondence (Clark and Aquadro, 2010).

As the dN/dS measure and its related modifica-
tions continue to be widely used for evaluating
selective pressures on protein-coding genes, here
we continue by discussing several details of the
dN/dS interpretation and possible pitfalls.

6.3 The utility and the interpretation of
the dN/dS measure

Throughout this book it can be seen that the ˘-
ratio is the most-widely used measure of selective
pressures on protein. It is often thought that the
assumption of neutrality at synonymous sites is
necessary for the measure to be meaningful. The
concerns are caused by a possibility of selection act-
ing on codon usage, which would reduce dS, result-
ing in elevated ˘-values, and possible corrections
were suggested (Hirsh et al., 2005). Reports from
Drosophila studies demonstrated that synonymous
sites could be affected by selection for transla-
tional efficiency (Akashi, 2001; Akashi and Eyre-
Walker, 1998; Duret, 2002; Kreitman et al, 1995).
More recent evidence from high-profile experimen-
tal studies shows other cases when synonymous
substitutions may not be considered neutral as
they influence translation, splicing, gene regula-
tion, mRNA stability, protein abundance, and even
protein folding (Carlini and Genut, 2006; Chamary
et al., 2006; Kimchi-Sarfaty et al., 2007; Komar, 2007,
2009; Parmley et al., 2006; Tsai et al., 2008).

Currently it is unclear how often estimates of
˘ are biased due to reduced dS. In a large-scale
study of human-mouse orthologs, Zhang and Li
(2004) found no trend for increased ˘ for lower
values of dS. Yet, one recent study suggests that
ignoring among-site synonymous variability may
cause an elevated level of false-positive inferences
of positive selection (Rubinstein et al., 2011). Conse-
quently, modelling variation of synonymous rates
(as well as nonsynonymous) may be desirable, so
as to avoid the possible negative effects of the
dS underestimation (for example, as is suggested
by: Kosakovsky Pond et al., 2010; Rubinstein et al.,
2011).

Nevertheless, the neutrality of dS is generally not
required for the ˘-ratio to be an effective measure
of selection on protein, so long as the evolution-
ary forces apply equally to synonymous and non-
synonymous sites (Yang, 2006). Since doubts about
the dS neutrality assumption recently re-occurred in
the literature, here we briefly review the arguments
evoked by Yang (2006).

Given a codon-substitution model with the
instantaneous rate matrix Q = {qij} (for examples
see Chapter 2), proportions of nonsynonymous and
synonymous mutations can be calculated:

ÒN =
∑

i �= j

i qij where i and j are nonsynonymous,

ÒS =
∑

i �= j

i qij where i and j are synonymous.

(6.1)

Then the rates of nonsynonymous and synonymous
substitutions per codon between two sequences
over time t are:

dN = Nd/N and dS = Sd/S, (6.2)

where Nd and Sd are the numbers of nonsynony-
mous and synonymous substitutions per codon:

Nd = tÒN and Sd = tÒS, (6.3)

and N and S are numbers of nonsynonymous and
synonymous sites per codon:

N = 3Ò˘=1
N and S = 3Ò˘=1

S (6.4)

with proportions Ò˘=1
N and Ò˘=1

S computed as in
Eqn 6.1 but assuming ˘ = 1, i.e. no selection on the



OUP CORRECTED PROOF – FINAL, 30/1/2012, SPi

82 DETECTING AND UNDERSTANDING NATURAL SELECTION

protein. From Eqn 6.2–6.4 we can see that the ˘-
ratio evaluates the disruption of nonsynonymous
and synonymous changes caused by natural selec-
tion on the protein, as it is the ratio of two ratios:

˘ = (ÒN/ÒS)/
(
Ò˘=1

N /Ò˘=1
S

)
, (6.5)

so that the observed ratio of proportions of nonsyn-
onymous and synonymous changes is compared to
a neutral expectation. The potential selection act-
ing on synonymous sites is essentially the selec-
tion at the DNA and RNA levels, as it affects both
synonymous and nonsynonymous sites equally.
Whether or not the evolution at synonymous sites
is neutral, it can be shown mathematically that the
dS is the average rate of change over the three
codon positions before selection on the protein
dS = t

3

∑
i �= j i q˘=1

ij , where q˘=1
ij is calculated the

same way as qij but assuming ˘ = 1, and dN =
˘dS is the rate of change after the selection on
the protein (Yang, 2006). As a result, contrast-
ing dN and dS evaluates the difference of rates
before and after selection operated on the pro-
tein, whether evolution at silent sites is driven
by mutation or selection. If synonymous sites
evolve non-neutrally due to codon bias, mutation-
selection models (Nielsen and Yang, 2003; Yang
and Nielsen, 2008) may be used to also study
the mutational biases or selection on synonymous
codon usage. For example, in the model FMutSel
of Yang and Nielsen (2008), the mutational biases
and selection at the DNA level are incorporated
using fitness parameters sij of each possible change,
which are dependent on the effective population
size.

However, forces that act differentially on syn-
onymous and nonsynonymous sites are of con-
cern, if they are not incorporated into a model.
Xing and Lee (2006) discussed possible sources
of bias, such as RNA selection pressure that is
3-nucleotide-periodic and systematically different
between adjacent nonsynonymous and synony-
mous sites, so that the average effect on nonsyn-
onymous and synonymous sites is distinct. Codon
bias can produce such effects but may be accounted
for with models like FMutSel (Yang and Nielsen,
2008). Another potential source of such unequal
bias may be the synonymous phasing of binding
sites for splicing factors or other proteins (Xing

and Lee, 2006), where it may be advantageous for
the binding sites to place their most constrained
nucleotides in synonymous sites and avoid non-
synonymous sites. Indeed, empirical studies show
that binding sites for splicing factors, such as exonic
splicing enhancers, may exhibit such a behaviour
(Cartegni et al., 2003; Liu et al., 1998). For exam-
ple, if a motif SF2/ASF systematically positions
its conserved nucleotide G at a synonymous site,
this may reduce (by maximum 54%) the probability
of a substitution at a synonymous site compared
to a nonsynonymous site. However, such maxi-
mum effect is rather unlikely, since it requires a
systematic positioning bias (which is not observed
for every instance) and four-fold degeneracy at all
synonymous sites (which is not true at all sites).
In addition, short lengths of such motifs (e.g. 6 nt
for SF2/ASF) means that the overall effect on the
˘-ratio is likely to be negligible, since it is typi-
cally measured over much longer lengths of coding
sequences (with recommended min. ∼100 codons,
(Anisimova et al., 2001; Anisimova et al., 2007)). In
fact, several experimental studies showed no strong
phasing effect (Dirksen et al., 2000; Pollard et al.,
2002; Rooke et al., 2003). Both bioinformatics and
significant experimental effort will be necessary to
evaluate whether and how often RNA regulatory
motifs have a tendency to place their conserved
positions in synonymous sites.

Whether or not it is rare for some biological
forces to act differently on nonsynonymous and
synonymous sites, can be studied by adapting
existing codon models. For example, the new codon
models of Zhou et al. (2010) distinguish conserved
and non-conserved synonymous changes, unlike
the standard models that assume all synonymous
changes are the same (but not FMutSel of Yang
and Nielsen, 2008). In the presence of codon bias,
it seems more realistic to differentiate between
synonymous changes that retain a preferred or
non-preferred codon and those that interconvert
between such codons. Based upon application of
this method, it was found that purifying selection
acted upon 5–10% of synonymous sites, whereas
positive selection on synonymous sites was rare
(Zhou et al., 2010).

Another important consideration when interpret-
ing estimates of the ˘-ratio relates to the genetics
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of populations represented in a dataset. The ˘-ratio
represents the selective pressure for a particular
codon site (or a set of sites) on a macro-evolutionary
scale. On a shorter scale, i.e. in population genetics,
the focus of study is the distribution of the selection
coefficient s of new mutations (or alleles) within
a population. Using Kimura’s result for the fixa-
tion probability of new mutations (Kimura, 1962),
Sawyer and Hartl (1992) derived the relationship
between ˘ and s for the infinite sites model, while
Nielsen and Yang (2003) used a similar reasoning
to demonstrate such a relationship for the finite
sites model (also see Chapter 7). The ˘-ratio may
be represented as a function of the effective popu-
lation size and the fitness coefficients, which can be
derived as a limit of an underlying Wright–Fisher
population process (Fisher, 1930) or the Moran
(1962) model. If all synonymous sites are assumed
to be neutral and all nonsynonymous changes have
the same selective coefficient s, then the relative rate
of nonsynonymous vs. synonymous fixation events
is described by:

˘ = f (S) =
S

1 − e−S
(6.5)

where S = 2Ne s is the population-scaled selection
coefficient for haploid organisms with effective
population size Ne .

Other assumptions (typical for population genet-
ics’ models) include independence of sites and the
fact that no more than two alleles are segregating
in the population at a single site, which is realis-
tic for low mutation rates (typical of most organ-
isms). The interpretation of ˘ > 1 as evidence of
positive selection is theoretically supported given
a Wright–Fisher model with selection (Nielsen and
Yang, 2003), so that ˘ > 1 corresponds to s >

0. With selection being more efficient in larger
populations, the power of detecting positive or
negative selection is expected to be higher for
organisms with large population size. On the other
hand, there will be more relaxed selection and
potentially more difficulty in differentiating it from
neutral evolution in species with small popula-
tion sizes.

Based on Eqn 6.5, inferences about relative pop-
ulation sizes may be made based on estimates of ˘

ratios (e.g. Kosiol et al., 2008). For example, if ˘1 and

˘2 are the estimates for populations represented by
lineages 1 and 2 both with selection coefficient s,
then the ratio of effective population sizes N1 and
N2 may be estimated using the inverse mapping
between ˘ and S:

N1

N2
=

N1 S
N2 S

=
f −1(˘1)
f −1(˘2)

. (6.6)

However, when modelling assumptions of
Eqn 6.5 are not satisfied, selection coefficients
will tend to be underestimated. Moreover, typical
intra-specific samples include polymorphisms
that segregate within populations, instead of
fixed differences as in inter-specific samples.
Kryazhimskiy and Plotkin (2008) derived an
analytical approximation for the expected ˘

under a single-population Wright–Fisher model
with selection, which is different from Eqn 6.5
and in contrast depends not only on the scaled
selection coefficient, but also on the population
mutation rate. Their computer simulations were
used to study the interpretation of ˘ in a single
population and demonstrated that the estimate
of ˘ becomes less reliable as an indicator of
selection. In particular, for large values of S,
the estimates of ˘ are often ≤ 1. This means
that the ˘-based test for positive selection in a
single population sample will often fail to detect
selection, even if selection has operated. On
the other hand, estimates of S ≤ 0 are unlikely
to have a correspondent ˘ estimate > 1. This
is consistent with the current view that LRT
for positive selection lack power to detect
selection in population samples (Anisimova,
2003). A significant LRT for positive selection in a
population sample may be due either to positive
selection or differences in a population size.
Slightly deleterious nonsynonymous mutations are
more likely to be segregating in small populations
than in large populations. To distinguish the two
scenarios, the population size should be estimated
using neutral markers.

6.4 Accounting for indels and
overlapping ORFs

Most methods for detecting selection, including
those based on codon models, examine simple point
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substitutions, but ignore insertions, deletions, over-
lapping ORFs, and more complex events. Positive
diversifying selection acts not only on substitu-
tions in protein coding genes, but insertions and
deletions may also play an important functional
role. Podlaha and Zhang (2003) have shown that
positive selection can act on linker length, where
the length of a loop can affect the local effec-
tive concentration of a domain on one side of a
loop with a domain on the other side. If func-
tion relies upon interaction of the domains, the
probability of interaction at any time will depend
upon the length of the loop (and the associa-
tion and dissociation constants for the interaction).
This was shown in the CATSPER1 voltage gated
calcium channel involved in sperm motility. Fur-
ther, loops tend to be the most variable parts of
proteins accumulating insertions and deletions at
a higher rate, and are known to form binding
pockets and interfaces for protein–protein inter-
action, as well as intra-molecular domain–domain
interactions. In a systematic study of insertion
and deletion dynamics across gene families in the
PVC superphylum of bacteria, it was found that
lineage-specific positive diversifying selection on
indels acts at least as frequently as positive diver-
sifying selection on substitutions (Kamneva et al.,
2010). Examples of positive diversifying selection
on insertions and deletions were detected in all
secondary structural units, while occurring most
frequently in looped regions. For example, specific
insertions into alpha-helical regions of the Gemmatu
obscuriglobus L17 ribosomal protein are thought
to affect its interaction with 23S rRNA (Kamneva
et al., 2010). As codon models develop, transitions
between gapped and non-gapped states will need
to be incorporated. The first steps toward this dif-
ficult task have been taken (Fletcher and Yang,
2010; Rivas, 2005; Rivas and Eddy, 2008; Suchard
and Redelings, 2006). Another fertile direction in
improving codon models concerns their ability to
accommodate frameshift mutations (unlike amino
acid models) and the underlying functional conse-
quences (unlike DNA models) (Sabath and Graur,
2010; Sabath et al., 2008). Chapter 2 of this book
discusses some solutions to address violations of
other model assumptions, such as recombination
and non-independence of sites.

6.5 Model-based approaches and
common misconceptions

The use of sound and robust statistical
methods is fundamental in any problem where
inferences are made based on observed data.
Model-based inference offers great advantages
by explicitly incorporating parameters of interest,
allowing studies of the interplay between different
model features using a statistical inference
framework of choice, such as maximum likelihood
or Bayesian inference. Models provide an excellent
foundation for hypotheses testing, prediction,
and decision-making. Critics of model-based
approaches point out that every model makes
a number of unrealistic assumptions and thus
cannot truly reflect real data. While models may
be inherently incorrect in several ways, some of
them can be very useful (Box, 1979). Choosing or
defining a useful model is a balancing act, where
only the factors reflecting major biases and features
should be included, while omitting other factors
that have little effect on model robustness. In
the words of Einstein, the model should be ‘as
simple as possible, but not simpler’. In place of
model-based approaches, parsimony-motivated
arguments and ad hoc techniques are sometimes
preferred for their simplicity. However, non-model
approaches also make assumptions, and their
statistical properties are similar to ‘no common
mechanism’ models, which are inherently too
parameter-rich and never have enough data to
estimate all their parameters (Holder et al., 2010;
Tuffley and Steel, 1998). As should transpire
throughout this book, robust statistical approaches
based on consistent and identifiable models should
always be preferred. For example, multiple ad hoc
methods have been suggested for the estimation
of dN and dS rates. However, ML estimation
based on Markov codon models outperforms
all such methods, given that the same biases
are accounted for (Yang and Nielsen, 2000).
Complex demographic scenarios become possible
to study in a model-based framework, while
ad hoc approaches produce very high rates of
false inferences (Beaumont et al., 2010). Most
simulation approaches require explicit models.
For example, approximate Bayesian computation
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(ABC) uses MCMC simulation to approximate
the posterior of distributions or the likelihood
surface from a population genetic model. This
has been successfully used for phylogeographic
inferences and testing for selection (Beaumont,
2002; Thornton and Andolfatto, 2006)). Moreover,
effect of violations of fundamental assumptions
may be tested in simulation, where the analysis
model ignores or misplaces the important forces
present in the simulation model. For example,
such robustness tests were performed on LRTs
for positive selection based on codon-models
(Anisimova et al., 2001, 2002, 2003; Anisimova
et al., 2007). Although simulation studies are often
valuable sanity checks, simulation studies should
not be over-generalized but provide some intuition
about the properties of datasets for which the
methods remain accurate. For example, optimal
divergence and recombination levels that can be
tolerated before resulting in excessive false-positive
inferences of selection can be inferred. Computer
simulations are also useful to evaluate the rate of
false-positive inferences under the null hypothesis
and the rate of false-negative inferences when
the null does not hold. While it is naturally
understandable to prefer the methods that do not
make any, or very few, false positives, in practice
such tests can be very conservative, as the high
power of the test is achieved as a trade-off between
false positive and false-negative rates. A method
with no false positives is usually no better than a
method with a low level of false positives, since it
will typically be more conservative, making few
true positive inferences. For example, Nozawa
et al. (2009) criticized branch-site models of codon
evolution, since they resulted in 32 cases of false
positives out of 14,000 datasets simulated under
the null model without selection. This is only 0.23%
rate of false-positive error, which is lower than 5%
defined by the significance level. At the same time,
as pointed out by Yang and Goldman (Yang et al.,
2009), the power of parsimony-based methods
promoted by Nozawa et al. (2009) is typically very
low, whereas power of ML methods in detecting
selection is often close to 100% (Wong et al.,
2004). Moreover, for divergent data parsimony or
other counting approaches rely on reconstructed
ancestral sequences as if they were observed. Even

when parsimony is performed using the probability
vectors of ancestral states, this will result in an
under-counting of the number of mutations by
failing to consider multiple mutations per site; such
methods (Benner et al., 1998; Liberles et al., 2001) are
better than other parsimony methods, but inferior
to model-based approaches. For divergent datasets
such approaches will be less accurate, while the ML
method does not cause an elevated number of false
positives in a LRT for positive selection (Anisimova
et al., 2001; Anisimova et al., 2007).

One common mistake may be described as data
dredging, so that a hypothesis is inferred from data
and consequently validated using the same data.
For example, a typical problem in evolutionary biol-
ogy seeks to detect episodes of positive selection
that affected one or more lineages in a protein-
coding alignment. The biological insight is not often
available to formulate a priori hypothesis for selec-
tion tests, as it is required with site-branch mod-
els (see Chapter 2). Thus, it may be tempting to
apply another model, such as the free-ratio branch
model to estimate the ˘-ratio for each branch and
then use these estimates to formulate subsequent
hypotheses for the branch-test. However, letting the
data influence the a priori hypothesis distorts the
p-values of subsequent significance tests, although
the parameterization of a model focused on the
previously inferred lineage is still sensible. Tests
that are not biased by the previous use of the data,
on the other hand, are fully valid, including an
analysis of a lineage where positive selection was
previously detected based on a different dataset.
To summarize, the use of data to formulate the
a priori hypothesis (based on inferences) for sub-
sequent testing biases the p-value of the test, but
can still be used for model parameterization for the
subsequent test.

Another problem involves the assumptions of
the applied models and tests, and their power. A
free-ratio model averages over all sites, but looks
for lineage-specific selection, whereas a site model
averages over all branches, but looks for sites that
are on average under selection through evolution-
ary history. Tellgren et al. (2004) applied a free-
ratios model to the myostatin gene in Artiodactyls,
identifying positive selection on several lineages.
Pie and Alvares (2006) applied a site model to
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the same dataset and did not find evidence for
positive selection, claiming that it invalidated the
results of Tellgren et al. (2004). Indeed, a simula-
tion of sequences under the exact parameterization
from the free-ratio model that was generated by
Tellgren et al. does not show evidence for posi-
tive selection under the sites tests applied by Pie
(data not shown), but this may be interpreted as a
result of low power of the tests applied by Pie and
Alvares (2006). Instead, branch-site models should
have a better power to detect lineage-specific pos-
itive selection, as is the case with the myostatin
data, where branch-site models detect only three
Artiodactyl lineages affected by positive selection
against a background of strong negative selection
on other lineages, with no sites showing evidence
for being under positive selection when the ˘-ratio
is averaged over all lineages.

When several tests are performed on the same
or overlapping data, multiple hypotheses testing
is required so that the overall false-positive error
rate (known as family-wise error rate or FWER)
is still below the required level. For example, if
10 tests are performed, each at the 5% significance
level, then the overall error rate can be as high as
1 − (1 − 0.05)10, which is 40%. Multiple testing cor-
rection (e.g. Miller, 1981; Rom, 1990) is employed to
reduce the FWER to the required level, but this also
reduces the power of the test and causes increased
levels of false negatives, especially when the num-
ber of tests is large. Since FWER may be often
too stringent, the false-discovery rate (FDR) was
proposed (Benjamini and Hochberg, 1995). FDR is
defined as the expected proportion of false rejec-
tions among all rejected hypotheses. By definition,
controlling FDR is possible when, at least for some
tests, the rejection of the null is expected, and the
threshold is set to indicate the tolerable (small) per-
centage of false rejections (for review see Manly
et al., 2006). For example, in the case of the mul-
tiple branch-site tests for positive selection where
each test sets one branch at the foreground, the
FDR may be controlled if positive selection on the
dataset was already demonstrated on a gene as a
whole (Anisimova et al., 2007). Subsequent multi-
ple branch-site tests will merely infer the branches
likely to be under positive selection at some sites.
However, corrections for multiple testing often

seriously reduce the power of the test to detect
true positives, especially when controlling FWER.
Being an important part of biological discovery, the
ability to identify lineages and sites under posi-
tive selection necessitates flexible approaches that
are not only statistically viable but are also suf-
ficiently powerful to discover episodic patterns.
Since Bayesian inference methods do not require
multiple testing, they appear more attractive when
applied to infer loci or lineages under selection in
large data, although such methods are often more
computationally demanding.

Inevitably, inferences of natural selection come
down to the classic problem of model selection: the
model providing the best description of the data
should be favoured. Both likelihood and Bayesian
frameworks allow provision for model selection.
Likelihood-ratio tests (or their CLR analogues) may
be used to compare nested hypotheses, and so
require the null hypothesis, which (in tests for
selection) is typically described by a model with-
out selection. Hierarchical LRT testing is possible
for multiple hierarchically nested hypotheses, but
requires multiple testing corrections and depends
on the order of testing the hypotheses. The Bayesian
equivalent of the LRT is to compute the Bayes
factors. If the null is too simplistic and describes
data poorly, it can be rejected, even if no selec-
tion is present. Likewise, if the alternative hypothe-
sis misrepresents the phenomenon of interest (e.g.,
the way selection acts), the test may have low
power due to poor fit compared to the null and
not because the phenomenon is not present. The
requirement for an alternative hypothesis was at
the heart of the classic debate between the Fish-
erian and Neyman–Pearson statisticians. Ideally,
multiple models should be formulated. These can
be evaluated based on the information criteria,
which intend to find a balance between maxi-
mizing the model fit and minimizing the num-
ber of parameters necessary to describe the data:
AIC (Akaike, 1974), BIC (Schwarz, 1978), and DIC
(Spiegelhalter et al., 2002). The more recent DIC is
still underutilized in bioinformatics and phyloge-
netics communities. While AIC and BIC are based
on the maximized likelihood, DIC selects a model
with the smallest deviance of the likelihood. In
addition, DIC does not require the knowledge of
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the number of parameters describing a model, but
rather estimates it based on the difference between
the log-likelihood of the parameter expectation and
the expectation of the log-likelihood over a sam-
ple. This may be convenient in some cases where
the complexity and the model hierarchy prevent
us from knowing the exact number of parameters.
For example, for a given protein-coding matrix,
AIC and BIC cannot be used to compare codon,
nucleotide, and amino acid models, due to our
inability to include the transformation of the data
structure in the parameter calculation. DIC makes
it possible to compare such models, relying on a
Bayesian framework.

However, just like with the LRT, the properties of
information criteria hold asymptotically (for large
samples). Given this and the problems associated
with multiple testing or defining sensible a pri-
ori hypotheses, a Bayesian framework for model
comparison and selection may offer more elegant
statistical solutions. Indeed, given a set of mod-
els (e.g., representing various selective or demo-
graphic scenarios) posterior probabilities for each
model may be compared without a priori knowl-
edge of most likely scenarios, with no need for mul-
tiple testing correction. The Bayesian framework
has a strong potential for discovering the unknown
relationships in large comparative and population
genomics data, together with other probabilistic
machine learning approaches. Bayesian approaches
are often better at dealing with smaller samples
and may incorporate more parameters compared to
likelihood approaches, making them convenient for
model selection among multiple complex scenarios.
However, problems with formulating reasonable
priors and convergence issues may pose serious set-
backs (e.g., (Rannala et al., 2011).

Hahn (2008) argued that recent evidence from
genomic analyses indicates that neutral evolution
no longer constitutes a useful null hypothesis, since
most predictions of the neutral theory are over-
whelmingly rejected by genomic data. Assuming
that the majority of genes do not evolve under selec-
tion (Cavalli-Sforza, 1966; Lewontin and Krakauer,
1973) biases the results of selection tests, where
the signal from the majority of genes is equated
to be neutral and is used to estimate demographic
model without selection. Given the complexity of

the problem, model-averaging approaches (both
frequentist and Bayesian) may be helpful to esti-
mate confidence regions of the parameters of focus.
Stochastic approaches allowing variation of popu-
lation models among loci (such as selection vs. neu-
tral) may also be promising.

Nevertheless, it can be quite challenging to avoid
false positives (and false negatives) in large-scale
scans for selection. Besides issues stemming from
model misspecifications, artefacts in genomic data
(Mallick et al. 2009; Schneider et al. 2009), errors in
alignment (Fletcher and Yang, 2010) or other down-
stream analyses, such as biases due to coupling
of multiple effects or failure to correct for multi-
ple testing, all contribute to an amount of error in
the final inferences of selection. We try to minimize
the systematic error at every step of the procedure
hoping that the end result will provide more than
just noise. A carefully conducted selection scan pro-
vides a fertile ground for further testing of the can-
didate genes. It is here where further dangers lie: a
careful judgment is required when interpreting the
results from single-gene studies to avoid fictitious
‘just-so stories’.

6.6 Selection and adaptive traits

More than 30 years ago in their seminal paper,
Gould and Lewontin (1979) warned against equat-
ing the observed functional differences with adap-
tive changes since the existence of one particu-
lar form is not sufficient to deduce its purpose.
Unfortunately, Gould and Lewontin’s beautifully
framed discussion evaded some patches of the
genomics community, resulting in several embar-
rassing claims of trait adaptation without the direct
evidence that selection was operating on these spe-
cific traits (Nielsen, 2009).

A variety of statistical methods enable us to
detect selection on specific residues and possi-
bly pinpoint the time episode during evolution,
when selection operated. Researchers then strive to
demonstrate the functional effect of such specific
mutations (e.g. MacCallum and Hill, 2006). Multi-
ple well-documented cases of adaptive evolution
have been published, including some of the exam-
ples shown in Figure 6.1. However, selection may
act differentially on different pleiotropic effects of
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selected residues, making it a much harder task
to relate specific mutations to the adaptation of
the phenotypic traits. For fast-evolving organisms
such as viruses and bacteria, experimental evolu-
tion experiments can be used to demonstrate that
certain mutations go to fixation under certain envi-
ronmental changes (Wichman et al., 2005). There
are two goals here and rigorous demonstration of
adaptive mechanisms for an evolutionary biology
audience requires more proof than characterization
of genotype-molecular phenotype links, which is a
goal in itself for molecular geneticists.

6.7 Lessons from genomic studies and
implications for studies of genetic
disease

In the last decade, various predictions from neu-
tral theory have been intensely tested on genomic
data or large-scale SNP datasets. Selection scans
focused on detecting genomic regions affected by
positive or negative selection and, in particular,
new advantageous mutations that recently came
to fixation in populations. For population genomic
data, fitting suitable demographic models became
crucial to disentangling the effects of selection
(Nielsen et al., 2009). On the other hand, estimating
demography from neutral models may also intro-
duce bias when the majority of genes are affected
by selection (Hahn, 2008), invalidating the outlier
approaches employed in many population genetic
studies. Despite the theoretical difficulties, this
may bring us back to the almost forgotten nearly-
neutral theory (Ohta 1992, 2002), which allows small
amounts of positive selection at the background
of mostly negative selection. Alternatively, the
genetic draft models that include repeated selective
sweeps (Gillespie 2000a, 2000b, 2001) may provide
a better description of the population dynamics.
Several comparative genomic studies used codon
models to evaluate selective pressure based on
the ˘-ratio distribution over genes, among sites,
and/or along lineages (Anisimova et al., 2007; Clark
et al., 2003; Kosiol et al., 2008). Such studies may be
even more insightful if conducted at both species
and population levels. Indeed, integrating popu-
lation genetic methods with comparative species
methods may be very useful, as the dynamics of

molecular change could be examined simultane-
ously at both population and species levels, pro-
viding additional insights about the dynamics of
populations and speciation.

Biswas and Akey (2006) evaluated the consis-
tency of selection inferences across several differ-
ent genome scans for selection. While the overlap
between the identified loci is typically very mod-
est, this seems not only due to difficulties with
confounding factors such as demography, but also
to the fact that different methods detect different
types of selection (and have different accuracy and
power), which also depends on the evolutionary
scale and populations included in a study. Overall,
the emerging patterns strongly suggest that posi-
tive selection plays an important role in shaping
the evolution of genomes, both within humans and
between different species. While the majority of
protein-coding genes evolve on average under strict
purifying pressure, several studies detected posi-
tive selection in genes that are involved in a variety
of biological processes; see, for example, the TAED
(Liberles et al., 2001; Roth et al., 2005) and Selectome
databases (Proux et al., 2009). In humans genes with
positive selection signal are related to immunity,
defense, tumour suppression, apoptosis, olfaction,
sensory perception, and spermatogenesis (Akey,
2009; Nielsen et al., 2007). Genome scans can also be
used to characterize the distribution of finesses of
selected species’ differences, as has been done, for
example, for human-chimp differences, where 10–
20% were estimated to be under positive selection,
while the majority were deleterious (Boyko et al.,
2008).

In contrast, genome-wide studies of selection on
indels have been rare. This may be due to the
fact that computationally tractable population or
evolutionary models with indels are still lagging
behind. Despite this, several genomic studies have
already shone some light on indel evolution. Lunter
and colleagues (2006) defined a ‘neutral indel’
model and used it to measure selection on non-
coding regions of genomes. Coding indel patterns
were examined in multiple sequence alignments of
human, chimp, and rhesus macaque (De la Chaux
et al., 2007) and in the PVC superphylum of bacteria
(Kamneva et al., 2010). De la Chaux et al. found that
coding indels were much less frequent compared to
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non-coding, indicating strong purifying constraints
similar to constraints acting on codon substitutions.
On the other hand, human-specific small-insertion
events may be driven by positive selection (Chen
et al., 2009).

Increasingly, disease-related studies stand to
profit from genomic scans. Strong associations
between selection and disease have been investi-
gated, primarily in humans, but potentially should
be very useful for other organisms. Many candi-
date genes under positive selection are involved
in cancer-related processes, defence, immunity,
chemosensory perception, and reproduction (for
example, Kosiol et al., 2008). Genes with stronger
purifying selection have a greater likelihood of
being involved in Mendelian diseases, which are
typically due to new deleterious alleles segregat-
ing in families (Bustamante et al., 2005; but see
Clark et al., 2003). Human adaptations to climate
may have contributed to selective pressure on
genes associated with common metabolic disorders
(Hancock et al., 2008). Complex disease like dia-
betes, asthma, heart disease and bipolar disor-
der also exhibit footprints of selection (Corona
et al., 2010; Ding and Kullo, 2009). Blekhman
et al. (2008) contrasted the evolutionary forces act-
ing in complex and simple Mendelian disorders
in humans. Genes involved in complex disease
showed lower evolutionary conservation and were
affected by both positive and purifying selection,
unlike the Mendelian disease genes that are largely
under strict negative selection. Unlike disease-
association mapping, macro-evolutionary and pop-
ulation genetic studies focus on the fitness effect
of susceptibility alleles, accounting for evolution-
ary dynamics in ancestral lineages. It is reason-
able to believe that selective pressures acting on
disease susceptibility alleles change over time due
to environmental or cultural changes, and several
hypotheses were proposed to reflect this. One clas-
sic example is ‘the thrifty genotype’ hypothesis
explaining the high incidence of obesity and type
II diabetes in modern humans (Neel, 1962). It was
postulated that as ancestral human hunter-gatherer
populations were regularly subjected to seasonal
periods of feast and famine, with a very effi-
cient system for fat and carbohydrate storage, this
‘thriftiness’ became detrimental when food became

easily available across seasons with the develop-
ment of food storage and processing strategies.

Thus fitness of ancestral alleles reflecting ancient
adaptations to ancestral lifestyle is better described
within non-stationary evolutionary models (Di
Rienzo and Hudson, 2005). Detecting signatures
of positive selection with such models contributes
additional valuable insights during disease map-
ping, as fitnesses of derived and ancestral alleles are
compared (Di Rienzo, 2006).

Finally, evolutionary inferences from both com-
parative and population genomic data, in combi-
nation with functional and structural information,
can be used to make predictions of mutations or
loci most likely to have negative fitness conse-
quences (Adzhubei et al., 2010; Boyko et al., 2008;
Ng and Henikoff, 2001; Ramensky et al., 2002). A
combination of such analyses with analyses of pos-
itive selection and genome-wise association stud-
ies opens new prospects for identifying the genetic
factors underlying complex disease (Chun and Fay,
2009; Corona et al., 2010; Manolio et al., 2009).
Statistical analyses of the human genome may
enable applications in a clinical content (Ashley
et al., 2010). Among current objectives is the inte-
gration of the evolutionary and population genet-
ics models with complimentary data sources (e.g.,
Dimitrieva and Anisimova, 2010) within machine
learning approaches for pattern discovery and inte-
grated mining of bio-data. The fields of evolution-
ary and medical genomics are growing and already
boast some promising results. With new mechanis-
tic codon models and their application to a host of
biological and biomedical problems (Goode et al.,
2008; Kosakovsky Pond et al., 2006), the future of
functional genomics looks exciting.
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