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Selection on the Protein-Coding Genome
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Abstract

Populations evolve as mutations arise in individual organisms and, through hereditary transmission, may
become “fixed” (shared by all individuals) in the population. Most mutations are lethal or have negative
fitness consequences for the organism. Others have essentially no effect on organismal fitness and can
become fixed through the neutral stochastic process known as random drift. However, mutations may also
produce a selective advantage that boosts their chances of reaching fixation. Regions of genes where new
mutations are beneficial, rather than neutral or deleterious, tend to evolve more rapidly due to positive
selection. Genes involved in immunity and defense are a well-known example; rapid evolution in these
genes presumably occurs because new mutations help organisms to prevail in evolutionary “arms races”
with pathogens. In recent years, genome-wide scans for selection have enlarged our understanding of the
evolution of the protein-coding regions of the various species. In this chapter, we focus on the methods to
detect selection in protein-coding genes. In particular, we discuss probabilistic models and how they have
changed with the advent of new genome-wide data now available.
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1. Introduction

Protein-coding genes are the DNA sequences used as templates for
the production of a functional protein. Such sequences consist of
nucleotide triplets called codons. During the protein production
phase, codons are transcribed and then translated into amino acids
(AAs) according to the organism’s genetic code. In the past, selec-
tion studies on coding DNA mainly focused on the analysis of
particular proteins of interest. With the availability of comparative
genomic data, the emphasis has shifted from the study of individual
proteins to genome-wide scans for selection. The overview of geno-
mic data underlying the genome-wide analysis of protein-coding
genes is included in Subheading 2.
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The analysis of coding sequences can be performed on three
different levels: usingDNA,AA, or codon sequences. Themutational
processes at these three levels can be described by probabilistic
models, which set the basis for evaluating selective pressures and
selection tests. The fundamental properties of these models are
summarized in Subheading 3.1.

There is accumulating evidence that the evolutionary process
varies between sites in biological sequences. Even in nonfunctional
genomic regions, there appears to be variation in the mutational
process. This variation is even more pronounced in active genomic
segments. In protein-coding sequences, changes that impede func-
tion are unlikely to be accepted by selection (e.g., mutation in active
site) while those altering less vital areas are under lower selective
constraints (e.g., mutation in nonfunctional loop regions). Fur-
thermore, systematic studies have shown that variability is not
determined exclusively by selection on protein structure and func-
tion, but is also affected by the genomic position of the encoding
genes, their expression patterns, their position in biological net-
works and their robustness to mistranslation (see ref. 1 for a review
of these factors).

In Fig. 1, we summarize the different levels of modeling selec-
tion on protein-coding sequences. The wedges represent the three
data types: DNA, AA, and codons. Temporal heterogeneity is
represented by the tree branches from lineage-specific models to
analyses considering genealogies and population properties, such as
the effective population size and the distribution of selective coeffi-
cients. For example, temporal heterogeneity is included in models
that detect regions with accelerated regions in DNA, rate shifts in
AA sequences, or the branch-specific codon models.

Furthermore, the concentric layers in Fig. 1 describe different
levels of modeling spatial heterogeneity in cDNA, such as
phylogenetic hidden Markov models (phylo-HMMs) for DNA or
branch-site models for codon sequences. Within the “Methods”

Fig. 1. A diagram illustrating the different data levels to analyze protein-coding sequences
and the relationship of the various approaches modeling spatial and temporal heterogeneity.
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section, Subheadings 3.2–3.4 are devoted to models allowing for
temporal and spatial heterogeneity and give an overview of state-of-
the-art methods to analyze selection of protein-coding regions.
Subheadings 4.1–4.5 discuss possible sources of errors in
genome-wide analyses. Finally, we conclude with the “Discussion”
section providing insights to emerging directions in studying selec-
tion at the genomics level.

2. Comparative
Genome Data

Several whole-genome sequence data sets are now available
for selection scans. Mammalian genomes are well represented
(in particular primates), and insect genomes are becoming more
numerous (in particularDrosophila).These data can be downloaded
as orthologous alignments from the Ensembl (2) and UCSC (3)
browsers. Methods for constructing orthologous sets of genes are
reviewed in Chapter 9 of Volume 1 (4).

In light of recent advances in DNA sequencing, with the
so-called next-generation sequencing (NGS) technologies that
have dramatically reduced the cost and time needed to sequence
an organism’s entire genome, large-scale (involving many organ-
isms) sequencing projects have been and are currently being under-
taken. In particular, genome projects resequencing 1000 Human,
1000 Drosophila melanogaster, and 1001 Arabidopsis individuals
are ongoing. These polymorphism data from multiple individuals
from several species enable us to detect very recent selection.

Together with the progress in sequencing technologies,
algorithmic advances now allow the de novo assembly of genomes
fromNGS data (see Chapter 5 in Volume 1 (5)), including complex
mammalian genomes (e.g., giant panda genome (6)). Announced
shortly after the Human 1000 Genomes Project, the 1000 Plant
Genomes Project is yet another, similar highly large-scale genomics
endeavor to take advantage of the speed and efficiency of NGS.
The Genome 10 K project aims to assemble a genomic zoo—a
collection of DNA sequences representing the genomes of 10,000
vertebrate species, approximately 1 for every vertebrate genus.
All these genomes can be subject to scans for selection, for which
we outline methods below.

3. Methods

3.1. Probabilistic

Models for Genome

Evolution

The statistical modeling of the evolutionary process is of great
importance when performing selection studies. When comparing
reasonably divergent sequences, counting the raw sequence
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identity (percentage of sites with observed changes) underestimates
the amount of evolution that has occurred because, by chance
alone, some sites will have incurred multiple substitutions. In this
chapter, we discuss maximum likelihood (ML) and Bayesian meth-
ods to detect selection based on probabilistic models of character
evolution. Such substitution models provide more accurate evolu-
tionary distance estimates by accounting for these unobserved
changes and explicitly model the selection pressure on the protein-
coding level.

One of the primary assumptions made in defining probabilistic
substitution models is that future evolution is only dependent on its
current state and not on previous (ancestral) states. Statistical pro-
cesses with this lack of memory are called Markov processes. The
assumption itself is reasonable because during the evolution muta-
tion and natural selection can only act upon the molecules present
in an organism and have no knowledge of what came previously.
However, some large-scale mutational events, such as recombina-
tion (7), gene conversion (e.g., see refs. 8 and 9), or horizontal
transfer (10), might not satisfy this “memoryless” condition.

To reduce the complexity of evolutionary models, it is often
further assumed that each site in a sequence evolves independently
from all other sites. There is evidence that the independence of sites
assumption is violated. In real proteins, chemical interactions
between neighboring sites or the protein structure affect how
other sites in the sequence change. Steps have been made toward
context-dependent models, where the specific characters at neigh-
boring sites affect the sites’ evolution (e.g., see refs. 11 and 12).

The Markov model asserts that one protein sequence is derived
from another by a series of independent substitutions, each chang-
ing one character in the first sequence to another character in the
second during the evolution. Thereby, we assume independence of
evolution at different sites. A continuous-time Markov process is
fully defined by its instantaneous rate matrix Q ¼ {qij}i,j ¼ 1. . .N.

The diagonal elements of Q are defined by a mathematical
requirement that the rows sum up to zero. For multiple sequence
alignments, the substitution process runs in continuous time over a
tree representing phylogenetic relations between the sequences.
The transition probability matrix P(t) ¼ {pij(t)} ¼ eQt consists of
transition probabilities from residue i to residue j over time t, and is
found as a solution of the differential equation dP(t)/dt ¼ P(t)Q
with P(0) being the identity matrix. In order for tree branches to be
measured by the expected number of substitutions per site,
the matrix Q is scaled so that the average substitution rate at
equilibrium equals 1.

As a matter of mathematical and computational convenience
rather than biological reality, several simplifying assumptions are
usually made. Standard substitution models allow any state to
change into any other. Such Markov process is called irreducible
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and has a unique stationary distribution corresponding to the
equilibrium codon frequencies p ¼ {pi}. Time reversibility implies
that the direction of the change between two states, i and j, is
indistinguishable so that pi pij(t) ¼ pj pji(t). This assumption helps
to reduce the number of model parameters and is convenient when
calculating the matrix exponential (the matrix Q of a reversible
process has only real eigenvectors and eigenvalues (13)). The fully
unrestrained matrix Q for N characters defines an irreversible
model with [N(N � 1) � 1] free parameters while for a reversible
process this number is [(N(N + 1)/2) � 2].

By comparing how well-substitution models explain sequence
evolution and by examining the parameters estimated from data,
ML and Bayesian inference can be used to address many biologi-
cally important questions. In this section, we focus on probabilistic
models that are used to detect selection.

3.2. Detecting Regions

of Accelerated

Genome Evolution

Understanding the forces shaping the evolution of specific lineages
is one of the most exciting areas in evolutionary genomics. In
particular, regions of accelerated evolution in mammalian and
insect species have been studied (e.g., see ref. 14). To eliminate
nonfunctional regions, one strategy is to begin with a search for
regions that are conserved through the mammalian history or
longer. A likelihood ratio test (LRT) may be used to detect acceler-
ation of rates in a lineage of interest, for example the human
lineage. Such LRT compares the likelihood of the alignment data
under two probabilistic models. The null model has a single-scale
parameter representing shortening (more conserved) and length-
ening (less conserved) of all branches of the tree. The alternative
model has an additional parameter for the human lineage, which is
constraint to be �1. This extra parameter allows the human branch
to be relatively longer (accelerated) than the branches in the rest of
the tree.

For example, this approach was used to identify genomic
regions that are conserved in most vertebrates, but have evolved
rapidly in humans. Interestingly, the majority of the human accel-
erated regions (HARs) were noncoding and many were located
near protein-coding genes with protein functions related to the
nervous system (14).

In contrast, the majority ofD. melanogaster-accelerated regions
(DMARs) are found in protein-coding regions and primarily result
from rapid adaptive change at synonymous sites (15). This could be
because flies have much more compact genomes compared to
humans; however, even after considering the genomic content, in
Drosophila, a significant excess of DMARs occur in protein-coding
regions. Furthermore, Holloway and colleagues observed a muta-
tional bias from G|C to A|T, and therefore the accelerated diver-
gence in DMARs might be attributed to a shift in codon usage and
a fixation of many suboptimal codons.
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In a similar manner, amino acid-based models search for site- or
lineage-specific rate accelerations and residues subject to altered
functional constraints. Such sites are likely to be contributing to
the change in protein function over time. The advantage of amino
acid-based models is that they might be suitable for the analysis of
deep divergences of fast-evolving genes, where sequences rapidly
saturate over time. Also amino acid methods are not influenced by
the effects of codon bias, a topic that is discussed at the end of this
chapter. The idea is that adaptive change on the level of amino acid
sequences may not necessarily correspond to an adaptive change in
protein function but rather to peaks in the protein-adaptive land-
scape reflecting the optimization of the protein function in a
particular species to long-term environmental changes. One class
of methods for detecting functional divergence searches for a
lineage-specific change in the shape parameter of the gamma distri-
bution that is used to model rate heterogeneity (see refs. 16–18
and 19). Other methods search for evidence of clade-specific rate
shifts at individual sites (see refs. 20–25 and 26). For example,
Gu (21) proposed a simple stochastic model for estimating the
degree of divergence between two prespecified clusters. The statis-
tical significance was tested using site-specific profiles based on an
HMM, which was used to identify amino acids responsible for these
functional differences between two gene clusters. More flexible
evolutionary models were incorporated in the maximum likelihood
approach applicable to the simultaneous analysis of several gene
clusters (27). This was extended (28) to evaluate site-specific shifts
in amino acid properties, in comparison with site-specific rate shifts.
Pupko and Galtier (24) used the LRT to compare ML estimates of
the replacement rate at an amino acid site in distinct subtrees.

3.3. Phylogenetic

Hidden Markov

Models

Phylo-HMMs are probabilistic models that consider not only the
way substitutions occur along an evolutionary history represented
by a tree, but also the way this process changes from site to site in a
genome. Phylo-HMMs describe evolution as a combination of two
Markov processes—one that operates in the dimension of space
(along the genome) and one that operates in the dimension of
time (along the branches of a phylogenetic tree). In the assumed
process, a character is drawn at random from the background
distribution and assigned to the root of the tree. Character
substitutions occur randomly along the tree branches from root
to leaves. The characters that are found at the leaves when the
process has been completed define an alignment column having a
correlation structure that reflects the phylogeny and the substitu-
tion process. The different phylogenetic models associated with the
states of the phylo-HMM may reflect different overall rates of
substitution (for example, conserved and nonconserved as in
Fig. 2) and different patterns of substitution or background dis-
tributions (as in different codon positions). The idea is to identify
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highly conserved genomic regions indicating purifying selection or
accelerated regions indicating positive selection in a set of multiple
aligned sequences. Such regions are good candidates for further
selection analysis and they are likely to be functionally important.
Hence, the identification of regions through phylo-HMMs has
become a subject of considerable interest in comparative genomics
(see refs. 29 and 30).

3.4. Codon Models:

Site, Branch,

and Branch-Site

Specificity

3.4.1. Basic Codon Models

In protein-coding sequences, nucleotide sites at different codon
positions usually evolve with highly heterogeneous patterns (e.g.,
see ref. 31). Thus, DNA substitution models fail to account for this
heterogeneity unless the sequences are partitioned by codon posi-
tions for the analysis. But even then, DNAmodels do notmodel the
structure of genetic code or selection at the protein level. Indeed,
one advantage of studying protein-coding sequences at the codon
level is the ability to distinguish between nonsynonymous (AA
replacing) and synonymous (silent) codon changes. Based on this
distinction, the selective pressure on the protein-coding level can
be measured by the ratio o ¼ dN/dS of the nonsynonymous-to-
synonymous substitution rates. The nonsynonymous substitution
rate may be higher than the synonymous rate and thuso > 1 due to
fitness advantages associated with recurrent AA changes in the
protein, i.e., positive selection on the protein. In contrast, purifying

Fig. 2. Visualization of an example phylo-HMM showing the probabilistic graph and the input alignment. The grey columns
represent the conserved state; the white columns the fast state. At each time step, a new state is visited according to the
transition probabilities (m and n parameters on arcs) and a multiple alignment column is emitted according to
the conserved and nonconserved phylogenetic models Cc and Cn. Thereby, the phylogenetic models include the
parameters describing the tree and the pattern of substitution.
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selection acts to preserve the protein sequence so that the nonsy-
nonymous substitution rate is lower than the synonymous rate, with
o < 1. Neutrally evolving sequences exhibit similar nonsynon-
ymous and synonymous rates, with o � 1.

First methods that used the o-ratio as a criterion to detect
positive selection were based on pairwise estimation of dN and dS
rates with “counting” methods (e.g., see ref. 32). However, ML
estimates of pairwise dN and dS based on a codon model were
shown to outperform all other approaches (33). Moreover, a
Markov codon model is naturally extended to multiple sequence
alignments, unlike the counting methods. This, together with the
benefits of the probabilistic framework within which codon models
are defined, made codon models very popular in studies of positive
selection in protein-coding genes.

The first two codon models were proposed simultaneously in
the same issue of Molecular Biology and Evolution ((34) and (35)).
The model of Goldman and Yang (34) included the transition/
transversion rate ratio k, and modeled the selective effect indirectly
using a multiplicative factor based on Grantham (36) distances, but
was later simplified to estimate the selective pressure explicitly using
the o parameter (37). The main distinction between the first codon
models concerns the way to describe the instantaneous rates
with respect to equilibrium frequencies: (1) proportional to the
equilibrium frequency of a target codon (as in Goldman and Yang
(34)) or (2) proportional to the frequency of a target nucleotide
(as in Muse and Gaut (35)).

Recently, empirical codon models have been estimated (see refs.
38 and 39) that summarize substitution patterns from large quan-
tities of protein-coding gene families. In contrast to the parametric
codon models that estimate gene-specific parameters (e.g., transi-
tion–transversion k, selective pressure o, etc.), the empirical codon
models do not explicitly consider distinct factors that shape protein
evolution. Standard parametric models assume that protein evolu-
tion proceeds only by successive single-nucleotide substitutions.
However, empirical codon models indicate that model accuracy is
significantly improved by incorporating instantaneous doublet and
triplet changes. Kosiol et al. (39) also found that the affiliations
among codon, the amino acid it encodes, and the physicochemical
properties of the amino acid aremain driving factors of the process of
codon evolution. Neither multiple nucleotide changes nor the
strong influence of the genetic code nor amino acid properties
form a part of the standard parametric models.

On the other hand, parametricmodels have been very successful
in applications studying biological forces shaping protein evolution
of individual genes. Thus, combining the advantages of parametric
and empirical approaches offers a promising direction. Kosiol,
Holmes, and Goldman (39) explored a number of combined
codon models that incorporated empirical AA exchangeabilities
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from ECM while using parameters to study selective pressure,
transition/transversion biases, and codon frequencies. Similarly,
AA exchangeabilities from (suitable) empirical AA matrices may be
used to alter probabilities of nonsynonymous changes, together
with traditional parameters o, k, and codon frequencies pj (40).
Such an approach accommodates site-specific variation of selective
pressure and can be further extended to include lineage-specific
variation. Combined empirical and parametric models will, there-
fore, becomemore frequent in selection studies. However, selecting
an appropriate model is of utmost importance and needs further
study. In particular, parameter interpretations may change with
different model definitions, since empirical exchangeabilities
already include average selective factors and other biases (39).
Thus, selection among alternative parameterizations requires detai-
led attention.

3.4.2. Accounting

for Variability of Selective

Pressures

First codon models assumed constant nonsynonymous and synon-
ymous rates among sites and over time. Although most proteins
evolve under purifying selection most of the time, positive selection
may drive the evolution in some lineages. During episodes of
adaptive evolution, only a small fraction of sites in the protein
have the capacity to increase the fitness of the protein via AA
replacements. Thus, approaches assuming constant selective pres-
sure over time and over sites lack power in detecting genes affected
by positive selection. Consequently, various scenarios of variation in
selective pressure were incorporated in codon models, making
them more powerful at detecting positive selection, and short
episodes of adaptive evolution in particular. Evidence of positive
selection on a gene can be obtained by an LRT comparing two
nested models: a model that does not allow positive selection
(constraining o � 1 to represent the null hypothesis) and a
model that allows positive selection (o > 1 is allowed in the alter-
native hypothesis). Positive selection is detected if a model o > 1
fits data significantly better compared to the model restricting
o � 1 at all sites and lineages. However, the asymptotic null distri-
bution may vary from the standard w2 due to boundary problems or
if some parameters become not estimable (e.g., see refs. 41 and 42).

3.4.3. Case Study:

Application

of a Genome-Wide Scan

of Positive Selection

on Six Mammalian

Genomes

In 2006, six high-coverage genome assemblies became available for
eutherianmammals. The increased phylogenetic depth of this data set
permitted Kosiol and colleagues (43) to perform several new lineage-
and clade-specific tests using branch-site codon models. Of ~16,500
human genes with high-confidence orthologs in at least two other
species, 544 genes showed significant evidence of positive selection
using branch-site codon models and standard LRTs.

Interestingly, several pathways were found to be strongly
enriched in genes with positive selection, suggesting possible
coevolution of interacting genes. A striking example is the
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complement immunity system, a biochemical cascade responsible
for the elimination of pathogens. This system consists of several
small proteins found in the blood that cooperate to kill target cells
by disrupting their plasma membranes. Of 28 genes associated with
this pathway in KEGG (see http://www.genome.jp/kegg-bin/
show_pathway?map04610 for the complement cascades), 9 were
under positive selection (FDR < 0.05) and 5 others had nominal
P < 0.05. Most of the genes under positive selection are inhibitors
(DAF, CFH, CFI) and receptors (C5AR1, CR2), but some are part
of the membrane attack complex (C7, C9, C8B), which punctures
cell membranes to initiate cell lysis. Here, we focus on the analysis
of these proteins of the membrane attack complex.

First, we calculate gene-averaged o value using the basic M0
model (34). The ML estimates of o < 1 (o ¼ 0.31 for C7,
o ¼ 0.25 for C8B, and o ¼ 0.44 for C9) indicate that most sites
in these genes are under purifying selection. However, selection
pressure could be variable at different locations of the membrane
proteins and we, therefore, continue our analysis by applying mod-
els that allow for variation in selective pressure across sites.

3.4.4. Selective Variability

Among Codons:

Site Models

The simplest site models use the general discrete distribution with a
prespecified number of site classes. Each site class i has an indepen-
dent parameter oi estimated by ML together with proportions of
sites pi in each class. Since a large number of site categories require
many parameters, three categories are usually used (requiring five
independent parameters). To test for positive selection, several pairs
of nested site models were defined to represent the null and alter-
native hypotheses in LRTs. For example, model M1a includes two
site classes, one with o0 < 1 and another with o1 ¼ 1, represent-
ing the neutral model of evolution (the null hypothesis). The
alternative model M2a extends M1a by adding an extra site class
with o2 � 1 to accommodate sites evolving under positive selec-
tion. Significance of the LRT is tested using the w22 distribution for
the M1 vs. M2 comparison. We test the C7 gene for positive
selection by the LRT comparing nested models M1a and M2a
(Table 1).

Model M2a has two additional parameters compared to model
M1a. The resulting LRT statistic is 2� (log L2 � log L1) ¼ 2�
(�6377.35 � (�6369.67)) ¼ 2 � 7.68 ¼ 15.36. This is much
greater than the critical value of the chi-square distribution
w2 (df ¼ 2, at 5%) ¼ 5.99, and we calculate a p-value of
P ¼ 5.0e–04. However, the M1a vs. M2a comparison for genes
C8B and C9 is not significant.

Another LRT can be performed on the basis of the modified
model M8 with two site classes: one with sites, where the o-ratio is
drawn from the beta distribution (with 0 � o � 1 describing
the neutral scenario), and the second, discrete class, with o � 1.
Constraining o ¼ 1 for this second class provides a sufficiently
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flexible null hypothesis, whereby all evolution can be explained by
sites with o from the beta distribution or from a discrete site class
with o ¼ 1. Significance of the LRT is tested using the mixture
1
2w

2
0 þ 1

2w
2
1 for the M8 (o ¼ 1) vs. M8 comparison. If the LRT for

positive selection is found to be significant, specific sites under
positive selection may be predicted based on the values of posterior
probabilities (PPs) to belong to the site class under positive selec-
tion (usually, PP > 0.95, but see refs. 44 and 45). Such posterior
probabilities are estimated using the naı̈ve empirical Bayesian
(NEB) approach (46), full hierarchical Bayesian approach (47), or
a mid-way approach — the Bayes empirical Bayes (BEB (45)). For a
discussion on this approaches, see Scheffler and Seoighe (48) and
Aris-Brosou (49). Alternatively, Massingham and Goldman (50)
proposed a site-wise likelihood ratio estimation to detect sites
under purifying or positive selection.

For the C7 gene, using BEB, we identified several amino acid
sites to be putatively under selection: residue R at position 223
(PP ¼ 0.94), H at position 239 (PP ¼ 0.93), and N at position
331 (PP ¼ 0.93). Unfortunately, the crystal structures of C7
(as well as C8B and C9) are not known, and we cannot relate the
location of amino acids in the protein sequence to relevant 3D data,
such as sites of protein–protein interaction or binding sites of the
protein. If such structural information were known, it would also
be possible to use this biological knowledge in a model that is aware
of the position of the different structural elements.

Site models that do not use a priori partitioning of codons
(as those described above) are known as random-effect (RE) mod-
els. In contrast, fixed-effect (FE) models categorize sites based on a
prior knowledge, e.g., according to tertiary structure for single

Table 1
Parameter estimates and log likelihoods for an LRT
of positive selection for the complement immunity
component C7

M1a (nearly neutral)

Site class 0 1

Proportion p0 ¼ 0.69 (p1 ¼ 1 � p0 ¼ 0.31)

o ratio o0 ¼ 0.07 (o1 ¼ 1)

Log likelihood L1 ¼ �6377.35

M2a (selection)

Site class 0 1 2

Proportion p0 ¼ 0.70 p1 ¼ 0.29 (p2 ¼ 1 � p0 � p1 ¼ 0.01)

o ratio o0 ¼ 0.08 (o1 ¼ 1) o2 ¼ 10.89

Log likelihood L2 ¼ �6369.67

The model M2a is the alternative model with a class of sites with o2 � 1.
The null hypothesis M1a is the same model but with o2 ¼ 1 fixed
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genes, or by gene category for multigene data. Site partitions for FE
models can be defined also based on inferred recombination break-
points, useful for inferences of positive selection from recombining
sequences (see refs. 51 and 52), although the uncertainty
of breakpoint inference is ignored in this way. FE models with
each site being a partition should be avoided, as they lead to
the “infinitely many parameter trap” (e.g., see ref. 53). Given a
biologically meaningful a priori partitioning, FE models are useful
to study heterogeneity among partitions. However, a priori infor-
mation is not always available.

3.4.5. Selective

Variability Over Time:

Branch Models

A simple way to include the variation of the selective pressure over
time is by using separate parameterso for each branch of a phylogeny
(known as free-ratio model (37)). Compared with the one-ratio
model (which assumes constant selection over time), the free-ratio
model requires additional 2T � 4 o-parameters for T species.
Figure 3 shows the estimates of the free-ratio model for the C8B
gene. Although the ML estimates of o values on the rodent lineages
are visibly higher than on the primate lineages, none of the branches
has o > 1.

Other branch models can be defined by constraining different
sets of branches of a tree to have an individual o. LRTs are used to
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0.52

0.16
0.09

0.17

0.16

0.32

0.42

0.46

mouse

rat

dog

macaque

chimp

human

Fig. 3. An estimate ofo for each branch of a six-species phylogeny. Shown is the maximum
likelihood estimate for the gene C8B. Each branch is labeled with the corresponding
estimate of o.
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decide (1) whether selective pressure is significantly different on a
prespecified set of branches and (2) whether these branches are
under positive selection.

However, branch models have relatively poor power to detect
selection (54) in comparison to branch-site models that are dis-
cussed in the next section. Also note that testing of multiple
hypotheses on the same data requires a correction, so the overall
false-positive rate is kept at the required level (most often 5%).
Correction for multiple testing further reduces the power of the
method, especially when many hypotheses are tested simulta-
neously (see discussion later).

3.4.6. Temporal

and Spatial Variation

of Selective Pressure

Several solutions were proposed to simultaneously account for
differences in selective constraints among codons and the episodic
nature of molecular evolution at individual sites. One of the first
models—model MA (45)—assumes four site classes. Two classes
contain sites evolving constantly over time: one under purifying
selection with o0 < 1 and another with o1 ¼ 1. The other two site
classes allow selective pressure at a site to change over time on a
prespecified set of branches, known as the foreground. The two
variable classes are derived from the constant classes so that sites
typically evolving with o0 < 1 or o1 ¼ 1 are allowed to be under
positive selection with o2 � 1 on the foreground. Testing
for positive selection on the rodent clade involves an LRT compar-
ing a constrained version ofMA (witho2 ¼ 1) vs. an unconstrained
MA model. Compared to branch models, the branch-site formula-
tion improves the chance of detecting short spills of adaptive
pressure in the past even if these occurred at a small fraction of sites.

Returning to our example of gene C8B of the complement
pathway, we perform a branch-site LRT for positive selection using
the M1a vs M2a comparison. Thereby, we take mouse and the rat
lineage, respectively, as foreground branches, and all other branches
as background branches. Significance of the LRT is tested using the
mixture 1

2w
2
0 þ 1

2w
2
1 with critical values to be 2.71 at 5%. For the C8B

gene, we calculate 2� (log L2 � log L1) ¼ 2 � 2.23 ¼ 4.46 for
the mouse lineage and 11.2 for the rat lineage.

A major drawback of described branch-site models is their
reliance on a biologically viable a priori hypothesis. In the context
of detecting sites and lineages affected by positive selection, one
possible solution is to perform multiple branch-site LRTs, each
setting a different branch at the foreground (55). In the example
of six species (Fig. 3), a total of nine tests (for an unrooted tree) are
necessary in the absence of an a priori hypothesis. Multiple test
correction has to be applied to control excessive false inferences.
This strategy tends to be conservative but can be sufficiently pow-
erful in detecting episodic instances of adaptation. As with all
model-based techniques, precautions are necessary for data with
unusual heterogeneity patterns, which may cause deviations from
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the asymptotic null distribution and thus result in an elevated false-
positive rate.

In the case of episodic selection where any combination of
branches of a phylogeny can be affected, a Bayesian approach in
lieu of the standard LRTs andmultiple testing have been suggested.
The multiple LRT approach is most concerned with controlling the
false-positive rate of selection inference, and is less suited to infer
the best-fitting selection history. In the hypothetical example
(Fig. 3), a total of 29 � 1 ¼ 511 selection histories (excluding
the history without selection on any branch) need to be considered.
The Bayesian analysis allows a probability distribution over possible
selection histories to be computed, and therefore permits estimates
of prevalence of positive selection on individual branches and
clades. Such approach evaluates uncertainty in selection histories
using their posterior probabilities and allows robust inference of
interesting parameters, such as the switching probabilities for gains
and losses of positive selection (43).

Other models (e.g., with dS-variation among sites (56)) also
may be extended to allow changes of selective regimes on different
branches. This is achieved by adding further parameters, one per
branch, describing the deviation of selective pressure on a branch
from the average level on the whole tree under the site model. Such
model is parameter rich and can be used for exploratory purposes
on data with long sequences, but does not provide a robust way of
testing whether o > 1 on a branch is due to positive selection on a
lineage or due to inaccuracy of the ML estimation.

Kosakovsky Pond and Frost (56) suggested detecting lineage-
specific variation in selective pressure using the genetic algorithm
(GA)—a computational analogue of evolution by natural selection.
The GA approach was successfully applied to phylogenetic recon-
struction (see refs. 57, 58, and 59). In the context of detecting
lineage-specific positive selection, GA does not require an a priori
hypothesis. Instead, the algorithm samples regions of the whole
hypotheses space according to their “fitness” measured by AICC.
The branch-model selection with GA may also be adapted to incor-
porate dN and dS among-site variation, although this imposes a
much heavier computational burden.

In branch and branch-site models, change in selection regime is
always associated with nodes of a tree, but the selective pressure
remains constant over the length of each branch. Guindon et al. (60)
proposed aMarkov-modulated model, where switches of selection
regimes may occur at any site and any time on the phylogeny. In a
covarion-like manner, this codon model combines two Markov
processes: one governs the codon substitution while the other
specifies rates of switches between selective regimes. These models
can be used to study the patterns of the changes in selective pres-
sures over time and across sites by estimating the relative rates of
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changes between different selective regimes (purifying, neutral,
and positive).

3.5. Software The software PHylogenetic Analysis with Space/Time (PHAST)
models includes several phylo-HMM-based programs. Two pro-
grams in PHAST are particularly interesting in the context of
selection studies: PhastCons is a program for conservation scoring
and identification of conserved elements (61). PhyloP is designed
to compute p-values for conservation or acceleration, either lineage
specific or across all branches (62). PHAST is designed for use on
DNA sequences only.

A variety of codon models to detect selection, including
branch-site models and the recent selection-mutation model, are
implemented in the CODEML program of PAML (63). HYPHY
is another implementation that includes a large variety of codon
models (64). FitModel is the ML implementation of the swit-
ching codon model (60). Selecton Web server (65) offers several
site models as well as the combined model described in Doron-
Faigenboim and Pupko (40).

Xrate (66) is a generic tool to implement complex probabilistic
models in the form of context-free stochastic grammars. Grammars
for codon models can be defined such that they lead to estimates
consistent with those at PAML, but for features of particular pro-
teins (e.g., see analysis of transmembrane proteins (67)). However,
Xrate is slower than PAML.

4. Notes/Discussion

With the wider use of codon models to detect selection, some
questioned the statistical basis of testing based onbranch-sitemodels.
In 2004, Zhang found that the original branch-site test (68)
produced excessive false positives when its assumptions were not
met. The modified branch-site test was shown to be more robust to
model violations (see refs. 45 and 69), and is now commonly used in
genome-wide selection scans (e.g., see ref. 70). Recently, however,
another simulation study by Nozawa et al. (71) suggested that this
modification also showed an excess of false positives. Yang and
Dos Reis (54) defended the branch-site test by examining the null
distribution and showing that Nozawa and colleagues (71) misin-
terpreted their simulation results. However, it is clear that even tests
with good statistical properties are affected by data quality and the
extent of models’ violations. Below, we list factors that can affect
the test, and so should be taken into account when analyzing
genome-wide data.
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4.1. Quality of Multiple

Alignments

The impact of the quality of sequence and the alignment is a major
concern when performing positive selection scans. For example, in
their analysis of 12 genomes, Markova-Raina and Petrov (72)
found that the results were highly sensitive to the choice of an
alignment method. Furthermore, visual analysis indicated that
most sites inferred as positively selected are in fact misaligned at
the codon level. The rate of false positives ranged ~50% and more
depending on the aligner used. Some of these results can be
ascribed to the high divergence level of the 12 Drosophila species,
and could be addressed by better filtering of the data. Nevertheless,
even in mammals where alignment is easier, problems have been
observed.

Bakewell et al. (73) used the branch-site test to analyze ~14,000
genes from the human, chimpanzee, and macaque, and detected
more genes to be under positive selection on the chimpanzee line-
age than on the human lineage (233 vs. 154). The same pattern was
also observed by Arbiza et al. (74) and Gibbs et al. (75). Mallick
et al. (76) reexamined 59 genes detected to be under positive
selection on the chimpanzee lineage by Bakewell et al. (73), using
more stringent filters to remove less reliable nucleotides and using
synteny information to remove misassembled and misaligned
regions. They found that with improved data quality, the signal of
positive selection disappeared in most of the cases when the branch-
site test was applied. It now appears that, as suggested by
Mallick et al. (76), the earlier discovery of more frequent positive
selection on the chimpanzee lineage than on the human lineage is
an artifact of the poorer quality of the chimpanzee genomic
sequence. This interpretation is also consistent with a few recent
studies analyzing both real and simulated data, which suggest that
sequence and alignment errors may cause excessive false positives
(see refs. 77 and 78). Indeed, most commonly used alignment
programs tend to place nonhomologous codons or amino acids
into the same column (see refs. 79 and 80), generating the wrong
impression that multiple nonsynonymous substitutions occurred at
the same site and misleading the codon models into detecting
positive selection (78).

It appears very challenging to develop a test of positive selection
that is robust to errors in the sequences or alignments. Instead, we
advise to carefully check the alignments of genes that are putatively
under selection by any method described here.

4.2. Overlapping

Reading Frames

Another line of development in modeling the evolution of protein-
coding genes concerns evaluating selective pressures on overlap-
ping reading frames (ORFs). In particular, viruses are known to
frequently encode genes with ORFs to maximize information con-
tent of their short genomes. This may increase codon bias and affect
evolutionary constraints on overlapping regions. Indeed, regions of
genes that encode several protein products evolve under constraints
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imposed on each frame, which is disregarded in standard codon
models. Although less common, ORFs are also found in eukaryotic
genomes.

Some solutions for modeling overlapping regions have been
proposed. A nonstationary model can fully accommodate complex
site dependencies caused by ORFs and other effects, such as meth-
ylation, but requires a conditional Markov process of a higher order
with 61Nx61N instantaneous rate matrix so that instantaneous
rates at a base are dependent on the neighboring nucleotide states
(see refs. 81 and 82). The ML parameter estimation is analytically
intractable for such model. When applied only to pairs of
sequences, the model requires MCMC for parameter estimation.
To speed up the computation under such site-dependent model, an
approximate estimation method can be used, based on the pseudo-
likelihood via expectation–maximization (EM) algorithm (83).
The process of context-dependent substitution may be extended
to a general phylogeny at the expense of limiting the full process-
based Jensen–Pedersen model (84). A second-order Markov
process running at the tips of a tree is an approximation since
interdependencies in the ancestral sequences are ignored. The
likelihood is calculated with a modified pruning algorithm and
optimized with EM.

Instead, computationally simple approximations may be used.
For example, Sabath, Landan, and Graur (85) extended the simple
GY codon model to accommodate different average selective pres-
sures in two overlapping genes using an additional o-parameter for
the second gene. This model, however, assumes a multiplicative
selective effect in ORF and uniform selective pressures within each
gene. Another alternative is to define a phylo-HMM with hidden
classes being the degeneracy classes, which include the possible
outcomes of ORFs (see refs. 86, 87, and 88). Such phylo-HMM
also assumes the constancy of selective pressure over time and in the
sequence and that degeneracy of a site is constant over time. It is
not known whether for the estimates of selective pressure in over-
lapping genes these assumptions are more detrimental compared to
those made in the model of Sabath et al. (85). Further improve-
ments in codon models are needed to describe the evolution of
ORFs more realistically to provide more accurate estimates of selec-
tion in gene regions with ORFs.

4.3. Recombination Most codon models assume a single phylogeny and a constant
synonymous rate among sites, implying that rate variation among
codons is solely due to the variation of the nonsynonymous rate.
Recent studies question whether such assumptions are generally
realistic (e.g., see ref. 89) suggested that failure to account for
synonymous rate variation may be one of the reasons why LRTs
for positive selection are vulnerable on data with high recombina-
tion rates. Some selection scans try to control this problem
by checking putatively selected genes for recombination either
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manually or automated with traditional detection software (e.g.,
RDP (90)). Also Drummond and Suchard (91) have recently devel-
oped a Bayesian approach to detect recombination within a gene.

Another approach is to explicitly consider recombination.
For example, Scheffler, Martin, and Seoighe (92) extended codon
models with both dN and dS site variation and allowed changes of
topology at the detected recombination breakpoints. Certainly, fast-
evolving pathogens (such as viruses) undergo frequent recombina-
tion which often changes either the whole shape of the underlying
tree or only the apparent branch lengths. While the efficiency of the
approach depends on the success of inferring recombination break-
points, the study demonstrated that taking into account alternative
topologies achieves a substantial decrease of false-positive inferences
of selection while maintaining reasonable power. In a related devel-
opment, Wilson and McVean (93) used an approximation to a
population genetics coalescent with selection and recombination.
Inference was performed on both parameters simultaneously using
the Bayesian approach with reversible-jump MCMC.

4.4. Biased Gene

Conversion

Mutation rate variation can also cause genomic regions to have
different substitution rates without any change in fixation rate.
Recent studies of guanine and cytosine (GC)-isochores in the
mammalian genome have suggested the importance of another
selectively neutral evolutionary process that affects nucleotide evo-
lution. As described in the work of Laurent Duret and others (see
refs. 94 and 95), biased gene conversion (BGC) is a mechanism
caused by the mutagenic effects of recombination combined with
the preference in recombination-associated DNA repair toward
strong (GC) versus weak (adenine and thymine [AT]) nucleotide
pairs at non-Watson–Crick heterozygous sites in heteroduplex
DNA during crossover in meiosis. Thus, beginning with random
mutations, BGC results in an increased probability of fixation of G
and C alleles. In particular, methods looking for accelerated regions
in coding DNA but also codon models cannot distinguish positive
selection from BGC (see refs. 96 and 97). Therefore, the putatively
selected genes should be checked for GC content, and closeness
to recombination hot spots and telomeres. A recent study by
Yap et al. (98) suggests that modeling nucleotide target frequencies
to be conditional on the other nucleotides in the codon should help
to alleviate codon-dependent biases, like BGC and CpG biases.

4.5. Selection

on Synonymous Sites

Most selection studies to date focused on detecting selection on the
protein, since synonymous changes are often presumed neutral and
so unaffected by selective pressures. However, selection on synony-
mous sites has been documented more than a decade ago. Codon
usage bias is known to affect the majority of genes and species.
In his seminal work, Akashi (99) demonstrated purifying selection
on genes of D. melanogaster, where strong codon bias favoring
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certain (optimal) codons serves to increase the translational accu-
racy. Pressure to optimize for translational efficiency, robustness,
and kinetics leads to synonymous codon bias, which was shown to
widely affect mammalian genes (100), as well as genes of fast-
evolving pathogens like viruses (101). Positive selection on synon-
ymous sites has been unheard of until recently when Resch et al.
(102) conducted a large-scale study of selection on synonymous
sites in mammalian genes. They measured selection by comparing
the average rate of synonymous substitutions (dS) to the average
substitution rate in the corresponding introns (dI). While purifying
selection was found to affect 28% of genes (dS/dI < 1), 12% of
genes were found to have been affected by positive selection on
synonymous sites (dS/dI > 1). The signal of positive selection
correlated with lower predicted mRNA stability compared to
genes with negative selection on synonymous sites, suggesting
that mRNA destabilization (affecting mRNA levels and translation)
could be driving positive selection on synonymous sites.

An increasing number of experimental studies may now explain
how synonymous mutation may be affected by positive or negative
selection. Codon bias to match skews of tRNA abundances may
influence translation (103). Changes at silent sites can disrupt splic-
ing control elements and create new “cryptic” splice sites, as well as
mRNA and transcript stability can be affected through preference or
avoidance of certain sequence motifs (see refs. 104 and 100). Silent
changes may affect gene regulation via constraints for efficient bind-
ing of miRNA to sense mRNA (see refs. 105 and 100). Cotransla-
tional protein folding hypothesis suggests that speed-dependent
protein folding may be another source of selective pressure (106)
because slower production could cause the protein to take an altered
final form (as has been shown in multidrug resistance-1 (107)).
Finally, synonymous changes may act to modulate expression by
altering mRNA secondary structure, affecting protein abundance
(108).

Models of codon evolution currently provide the best approach
for studying selection on silent sites. In particular, models with
variable synonymous rates (see refs. 64 and 109) may be applied
to evaluate the extent of variability of synonymous rates in a gene
and to predict the positions of most conserved and most variable
synonymous sites (for example, see ref. 101). Whether or not the
site has been affected by selection requires further testing. For
example, Zhou, Gu, and Wilke (110) suggested distinguishing
two types of synonymous substitution rates: the rate of conserving
synonymous changes dSC (between “preferred” codons or between
“rare” codons) and the rate of nonconserving synonymous changes
dSN (between codons from the two different groups “rare” and
“preferred”). Silent sites with dSN/dSC > 1 may be considered to
be under positive selection, and significance can be tested based on
an LRT. Alternatively, synonymous rates at sites may be compared
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to the mean substitution rate in the corresponding intron, which
can be implemented in a joint codon and DNA model, similar to
the approach proposed by Wong and Nielsen (111).

While selection on codon usage bias is typically studied with
various codon adaptation indexes (see ref. 112 for review), several
codon models were developed for this task (see refs. 113, 114, and
115). The mutation-selection models include selective and muta-
tional effects separately and allow estimating the fitness of various
codon changes. The relative rate of substitution for selected muta-
tions to neutral mutations is given by o ¼2g/(1 � e�2g) , where
g ¼ 2Ns is the scaled selection coefficient (see Exercise 3 for a deriva-
tion). Nielsen et al. (114) assumed that all changes between preferred
and rare codons have the same fitness (and so the same selection
coefficient). They used one selection coefficient for optimal codon
usage for each branch of a phylogeny, and estimated these jointly with
the o-ratio by ML. Using this approach to study ancestral codon
usage bias, Nielsen et al. (114) confirmed the reduction in selection
for optimal codon usage in D. melanogaster. In contrast, Yang and
Nielsen (2008) estimated individual codon fitness parameters and
used them to estimate optimal codon frequencies for a gene across
multiple species. LRT is used to test whether the codon bias is due to
themutational bias alone. Finally, one remarkable contribution of the
mutation-selection models is the connection they make between the
interspecific and population parameters. Exploiting this further
should provide insights into how changing demographic factors
influence observed intraspecific patterns.

5. Outlook:
Selection Scans
Using Population
Data By modeling genome evolution as a process by which a single

genome sequence mutates along the branches of a species phylog-
eny, standard phylogenetic methods reduce the entire populations
to single points in genotypic space. In reality, each population
consists of many individuals—or more precisely, chromosomes
from these individuals—that are related by trees of genetic ancestry
known as genealogies. With the publication of large amounts of
genome-wide polymorphism data, it is now possible to study the
role of advantageous mutations. Many population genomic techni-
ques can be applied to noncoding and coding regions. Here, we
focus on scans for selection acting on protein-coding genes. Meth-
ods for the analysis of noncoding regions are discussed in Chapter 6
of this Volume (116).
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5.1. Neutrality Tests

with a Focus

on Protein-Coding

Genes

Many methods have been proposed for population data. Tajima’s
D-test (for DNA data) compares the estimate of the population-
scaled mutation rate based on the number of pairwise differences
with that based on the number of segregating sites in a sample
(117). Under neutrality, Tajima’s D � 0 and significant deviations
may indicate a selective sweep (D < 0) or balancing selection
(D > 0). Other neutrality tests are based on a similar idea but use
different summary statistics (e.g., see refs. 118 and 119). The
Hudson–Kreitman–Aguade (HKA) test for DNA data evaluates
the neutral hypothesis by comparing variability within and between
species for two or more loci (120). Under neutrality, levels of poly-
morphism (variability within species) and divergence (variability
between species) should be proportional to the mutation rate, result-
ing in a constant polymorphism-to-divergence ratio. Tests of selective
neutrality based solely on simple summary statistics are successful at
rejecting the strictly neutral model but are sensitive to demographic
assumptions, such as constant population size, no population struc-
ture, and migration (see refs. 121 and 122). While simple neutrality
tests are not specific to coding data, performing such tests separately
for synonymous and nonsynonymous changes can potentially help
separating selective and demographic effects. Indeed, the popular
McDonald–Kreitman (MK) test for protein-coding data exploits
the underlying idea of the HKA test, but classifies the observed
changes into synonymous and nonsynonymous (123). The MK
test compares the ratio of nonsynonymous (amino acid altering) to
synonymous (silent) substitutions within and between species, which
should be the same in the absence of selection. This test is more
robust to demographic assumptions, as the effect of the demographic
model should be the same for bothnonsynonymous and synonymous
sites (122). Whereas the population demographic process is expected
to affect all genomic loci, selection should be nonuniform. Several
studies (see refs. 124, 125, and 126) took a genomic approach and
confirmed that polymorphism-to-divergence ratios differed signifi-
cantly only for a few genes, although the high amounts of inferred
adaptation exceeded expectations.

Apart from biasing the mutation frequency distribution, selec-
tion may also affect the distribution of genealogical shapes in
population data. Drummond and Suchard (91) proposed a Bayes-
ian test for neutrality that takes into account the distribution of
genealogical shapes and can test for both selection and recombina-
tion. Such test should be relevant particularly for protein-coding
sequences, where most selection is expected to operate. More
generally, methods that use information from both the mutation
frequency spectrum and the shape of the genealogies are expected
to be more powerful than when either used individually.

Unlike neutrality tests that do not explicitlymodel selection, the
Poisson random-field framework (see refs. 127–130 and 131)
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enables estimation of mutation and selection parameters in various
population genetics scenarios. The rationale behind the approach is
that natural selection alters the site-frequency spectrum, making it
possible to estimate the strength of selection that has contributed to
the observed deviation from neutrality. Boyko et al. (132) estimated
~10% of adaptive amino acid changes in humans, but the proportion
of adaptively driven substitutions is higher than 50% in somemicro-
organisms and Drosophila (see refs. 125, 133, and 134). Also
current estimates might be biased downwardly in the presence of
slightly deleterious mutations and decreasing population size (135).

Recently, Gutenkunst et al. (136) have developed methods for
multidimensional site frequency spectra. These allow the joint
inference of the demographic history of multiple populations.
Nielsen et al. (137) used a 2D site frequency spectrum to study
the Darwinian and demographic forces in protein-coding genes
from two human populations. In the future, we can expect to
study selection on protein-coding genes in more populations
from more species as new sequencing technologies and new meth-
ods for detecting selection in population data will be developed.

6. Exercises

Q1. Amino acid and codon substitution models: How many
parameters need to be estimated in the instantaneous rate matrix
Q defining a reversible empirical AA model? How many such para-
meters are necessary to estimate for a reversible empirical codon
model? How many parameters are to be estimated in both cases if a
model is nonreversible?

Q2. Positive selection scans: Go to the UCSC genome browser
(http://genome.ucsc.edu). Search for the HAVCR1 (hepatitis A
virus cellular receptor 1) in the human genome (assembly
NCBI36/hg18) belonging to the mammalian clade.

Genome browser tracks provide the summary of previous anal-
ysis of coding regions. Switch “Pos Sel Genes” under “Genes and
Gene Prediction Tracks” to “full” and collect information on the
LRTs that were performed for the six species scan. Next, switch the
“17-Way Cons” under “Comparative Genomics” to full. Why are
only a few bases in the HAVCR1 gene conserved? Is this consistent
with the results obtained by LRTs?

Click on the “Conservation” track to retrieve the multiple
sequence alignment for theHAVCR1gene.Use the PAML software
(http://abacus.gene.ucl.ac.uk/software/paml.html) to test the
models for positive selection on any lineage of the mammalian
tress by comparing models M1a and M2a with an LRT.
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Use PAML to identify sites under positive selection by using
the BEB approach. Do you find the same sites to be under selection
as in Fig. 3 of Kosiol et al. (43)?

Q3. Selection-mutation models: Models incorporating selection
and mutation rely on a theoretical relationship between the non-
synonymous–synonymous rate ratio o and the scaled selection
coefficient g ¼ 2Ns. The probability that a newmutation eventually
becomes fixed is

Pr(fixation) ¼ 1� e�2s

1� e�4Ns
¼ 2s

1� e�4Ns

if we assume that the selection coefficient s is small and N is large
and represents the effective population size, which is constant in
time (138). Furthermore, assume that synonymous substitutions
are neutral and nonsynonymous have equal (and small) selection
coefficients. Derive the relationship

o ¼ 4s

1� e�4Ns
¼ 2g

1� e�2g

that combines phylogenetic with population genetic quantities and
is crucial for mutation-selection models.
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